
1
3
4
7
8
10
11
12
14
16
17
19
22
23
24
26
28
29
30
31
33
34
36
37
38
39
41
42
43
44
45
46
47
49
51
53
58
60
61
63
65
66
68
69
71
72
73
74

Table	of	Contents

Table	of	Contents
Pivotal	Greenplum	Command	Center	Documentation
About	Pivotal	Greenplum	Command	Center
Installing	the	Greenplum	Command	Center	Software
Downloading	and	Running	the	Greenplum	Command	Center	Installer
About	the	Command	Center	Installation
Setting	the	Greenplum	Command	Center	Environment
Creating	the	gpperfmon	Database
Upgrading	Greenplum	Command	Center
Uninstalling	Greenplum	Command	Center
Running	Greenplum	Command	Center	2.x	in	Parallel	With	3.x
Creating	Greenplum	Command	Center	Console	Instances
Connecting	to	the	Greenplum	Command	Center	Console
Greenplum	Command	Center	User	Guide
Dashboard
Query	Monitor
Host	Metrics
Cluster	Metrics
Monitoring	Multiple	Greenplum	Database	Clusters
History
System
Segment	Status
Storage	Status
Admin
Permission	Levels	for	GPCC	Access
Authentication
Administering	Greenplum	Command	Center
Starting	and	Stopping	Greenplum	Command	Center
Administering	Command	Center	Agents
Administering	the	Command	Center	Database
Administering	the	Web	Server
Configuring	Greenplum	Command	Center
Enabling	Multi-Cluster	Support
Securing	a	Greenplum	Command	Center	Console	Instance
Configuring	Authentication	for	the	Command	Center	Console
Enabling	Authentication	with	Kerberos
Securing	the	gpmon	Database	User
Utility	Reference
gpperfmon_install
gpcmdr
Configuration	File	Reference
Command	Center	Agent	Parameters
Command	Center	Console	Parameters
Setup	Configuration	File
Greenplum	Database	Server	Configuration	Parameters
Command	Center	Database	Reference
database_*
emcconnect_history

©	Copyright	Pivotal	Software	Inc,	2013-2016 1 3.1.1

75
76
80
81
82
86
97
99
101
102
103
104
105
106
109
110

diskspace_*
filerep_*
health_*
interface_stats_*
iterators_*
Iterator	Metrics
log_alert_*
queries_*
segment_*
socket_stats_*
system_*
tcp_stats_*
udp_stats_*
iterators_*_rollup
dynamic_memory_info
memory_info

©	Copyright	Pivotal	Software	Inc,	2013-2016 2 3.1.1

	

Pivotal	Greenplum	Command	Center	Documentation
Documentation	for	Pivotal	Greenplum	Command	Center.

		About	Greenplum	Command	Center
Pivotal	Greenplum	Command	Center	is	a	management	tool	for	the	Greenplum	Big	Data	Platform.	This	section	introduces	key	concepts	about
Greenplum	Command	Center	and	its	components.

		Installing	the	Greenplum	Command	Center	Software
Downloading	and	installing	the	Greenplum	Command	Center	software	in	your	Greenplum	cluster	and	one-time	tasks.	This	section	also	provides
instructions	for	upgrading	Command	Center	to	a	new	release	and	migrating	Command	Center	instances.

		Creating	Greenplum	Command	Center	Console	Instances
Creating	a	Command	Center	Console	instance	to	manage	a	Greenplum	cluster.

		Using	the	Greenplum	Command	Center	Web	Interface
Using	the	Greenplum	Command	Center	web	user	interface	to	monitor	and	manage	a	Greenplum	cluster.

		Administering	Greenplum	Command	Center
System	administration	information	for	the	Greenplum	Command	Center	components.

		Utility	Reference
Reference	information	for	the	two	Greenplum	Command	Center	utility	programs:	the	 gpperfmon_install 	utility	that	enables	the	data	collection	agents
and	the	 gpcmdr 	utility	that	sets	up	and	manages	the	web	application.

		Configuration	File	Reference
References	for	Greenplum	Command	Center	configuration	files.

		Command	Center	Database	Reference
References	for	the	Greenplum	Command	Center	 gpperfmon 	database	tables.

©	Copyright	Pivotal	Software	Inc,	2013-2016 3 3.1.1

	

About	Pivotal	Greenplum	Command	Center
Pivotal	Greenplum	Command	Center	is	a	management	tool	for	the	Greenplum	Big	Data	Platform.	This	section	introduces	key	concepts	about	Greenplum
Command	Center	and	its	components.

Introduction
Greenplum	Command	Center	monitors	system	performance	metrics,	analyzes	system	health,	and	allows	administrators	to	perform	some	management
tasks	in	a	Greenplum	environment.	The	Greenplum	Command	Center	Console	is	an	interactive	graphical	web	application	that	is	installed	on	a	web	server,
usually	on	the	master	host.	Users	view	and	interact	with	the	collected	Greenplum	system	data	through	this	application.

Greenplum	Command	Center	is	comprised	of	data	collection	agents	that	run	on	the	master	host	and	each	segment	host.	The	agents	collect	data	about
queries	and	system	utilization	and	update	the	Greenplum	master	host	at	regular	intervals.	Greenplum	Command	Center	stores	its	data	and	metrics	in	a
dedicated	Greenplum	database	(the	Command	Center	database,	gpperfmon)	whose	information	is	distributed	among	the	master	host	and	segment	hosts
like	any	other	Greenplum	Database.	You	can	access	the	data	stored	in	the	Command	Center	database	through	the	Greenplum	Command	Center	Console
and	through	SQL	queries.

	Note:	Command	Center	requires	Greenplum	Database	to	operate	because	Command	Center	stores	its	information	in	a	Greenplum	database.

Supported	Greenplum	Platforms
Greenplum	Command	Center	is	currently	certified	for	the	Greenplum	Data	Computing	Appliance	(DCA)	and	Greenplum	Database	software-only
environments.	Command	Center	monitors	the	following	for	each	environment:

Greenplum	Data	Computing	Alliance:

Greenplum	Database	Module

Greenplum	Database	(software-only	environments):

Greenplum	Database

See	the	Release	Notes	for	your	Greenplum	Command	Center	release	for	information	about	the	supported	software	and	hardware	versions.

Architecture
The	following	figure	illustrates	the	Greenplum	Command	Center	architecture.

©	Copyright	Pivotal	Software	Inc,	2013-2016 4 3.1.1

Greenplum	Data	Collection	Agents
Greenplum	data	collection	agents	run	on	Greenplum	segment	hosts	to	collect	the	query	and	system	statistics	to	be	displayed	in	the	Command	Center.
The	agents	are	installed	with	the	Greenplum	Database	distribution	but	are	not	enabled	until	you	create	the	Greenplum	Command	Center	database
(gpperfmon)	and	start	them.	The	agents	may	also	be	enabled	or	disabled	by	setting	the	 gp_enable_gpperfmon 	server	configuration	parameter.	When	this
parameter	is	enabled,	the	data	collection	agents	run	on	all	Greenplum	hosts	(master	and	segments),	and	start	and	stop	along	with	Greenplum	Database
server	processes.

The	master	agent	polls	all	segment	agents	for	system	metrics	and	other	data	at	a	configurable	interval	(called	the	quantum).	The	master	agent	amasses
the	data	from	all	segments,	stores	it	in	flat	files,	and	periodically	commits	the	data	in	the	files	to	the	Greenplum	Command	Center	database.

Greenplum	Command	Center	Database
The	Greenplum	Command	Center	database	(gpperfmon)	is	a	database	within	your	Greenplum	system	dedicated	to	storing	and	serving	system	data.	Your
Greenplum	Database	installation	includes	the	 gpperfmon_install 	utility	to	install	the	Command	Center	database	and	optionally	start	the	data	collection
agents.

When	this	document	refers	to	the	Command	Center	database,	it	is	referring	to	the	database	named	gpperfmon.

Greenplum	administrators	can	connect	to	the	Command	Center	database	using	client	programs	such	as	psql	or	application	programming	interfaces
(APIs)	such	as	JDBC	(Java	Database	Connectivity)	and	ODBC	(Open	Database	Connectivity).	Administrators	can	also	use	the	Greenplum	Command	Center
Console	to	view	reports	on	current	and	historical	performance	and	perform	other	management	tasks.

The	Command	Center	database	consists	of	three	sets	of	tables;	now	tables	store	data	on	current	system	metrics	such	as	active	queries,	history	tables
store	data	on	historical	metrics,	and	tail	tables	are	for	data	in	transition.	Tail	tables	are	for	internal	use	only	and	should	not	be	queried	by	users.	The	now
and	tail	data	are	stored	as	text	files	on	the	master	host	file	system,	and	the	Command	Center	database	accesses	them	via	external	tables.	The	history
tables	are	regular	database	tables	stored	within	the	Command	Center	(gpperfmon)	database.	See		Command	Center	Database	Reference	for	the	schema
definitions	of	these	tables.

Greenplum	Command	Center	Console
Greenplum	Command	Center	provides	a	browser-native	HTML5	graphical	console	for	viewing	Greenplum	Database	system	metrics	and	performing
certain	database	administrative	tasks.	This	browser-based	application	provides	the	following	functionality:

Interactive	overview	of	realtime	system	metrics

Detailed	realtime	statistics	for	the	cluster	and	by	server

Query	Monitor	view	lists	queries	executing	and	waiting	to	execute

Four	permission	levels	to	allow	users	to	view	or	cancel	their	own	or	others’	queries,	and	to	view	or	manage	administrative	information

Cluster	Metrics	view	shows	synchronized	charts	of	historical	system	metrics

History	view	lists	completed	queries	and	system	metrics	plotted	over	a	selected	time	period

Select	a	query	to	view	query	text	and	explain	plan

Segment	Status	view	with	summaries	and	details	by	segment

Storage	Status	view	with	summaries	and	details	by	segment	data	directory

Admin	>	Permissions	view	to	see	or	manage	permission	levels

Admin	>	Authentication	view	to	see	or	edit	the	 pg_hba.con 	host-based	authentication	configuration	file

If	you	have	multiple	Greenplum	environments,	you	can	create	separate	Command	Center	instances	for	them.	Each	separate	console	instance	operates	on
a	unique	port	and	has	its	own	unique	configuration	options.	For	more	information,	see		Creating	Greenplum	Command	Center	Console	Instances.

Greenplum	Command	Center	Web	Service
The	Greenplum	Command	Center	Console	queries	the	Command	Center	database	through	a	web	service	framework	composed	of	a	lightweight	go-based
web	server.

The	console	setup	utility,	 gpcmdr ,	sets	up	the	web	server	and	web	service,	prompting	you	for	basic	configuration	information	on	the	desired	port	and	SSL
options.	Under	normal	conditions,	the	web	server	and	web	service	API	require	minimal	maintenance	and	administration,	as	described	in		Web	Server

©	Copyright	Pivotal	Software	Inc,	2013-2016 5 3.1.1

Administration.

©	Copyright	Pivotal	Software	Inc,	2013-2016 6 3.1.1

	

Installing	the	Greenplum	Command	Center	Software

Installation	Notes
Greenplum	Command	Center	may	be	installed	on	a	Dell	EMC	Data	Computing	Appliance	(DCA)	or	in	a	Greenplum	Database	software	environment.

Command	Center	is	compatible	with	the	Data	Computing	Appliance	(DCA),	versions	1.2.x,	2.x,	and	3.x.	Visit		Pivotal	Network 	to	download	an	installer
for	the	most	recent	3.x	version	for	your	DCA.	See	the	Dell	EMC	DCA	documentation	for	information	about	installing	the	software	on	your	appliance.

The	Greenplum	Command	Center	software	is	typically	installed	on	the	Greenplum	Database	master	host.	Installing	on	the	master	host	provides	the	best
performance	and	security,	since	the	Command	Center	Console	database	requests	are	not	passed	over	the	network.

If	you	are	installing	the	Command	Center	Console	on	a	remote	system	(that	is,	not	the	same	system	on	which	you	installed	Greenplum	Database),	you
must	first	install	the	Greenplum	Database	binary	software	files	on	the	remote	system.	Note	that	you	do	not	need	to	initialize	the	database	on	the	remote
system.	See	the	Greenplum	Database	Installation	Guide	for	help	installing	the	Greenplum	Database	software.

If	you	want	to	use	features	of	Greenplum	Command	Center	2.x	that	are	not	available	in	the	3.x	release,	see		Running	Greenplum	Command	Center	2.x	in
Parallel	With	3.x.

This	section	contains	the	following	topics:

	Downloading	and	Running	the	Greenplum	Command	Center	Installer

	Setting	the	Greenplum	Command	Center	Environment

	Creating	the	gpperfmon	Database

	Upgrading	the	Greenplum	Command	Center	Software

	Uninstalling	Greenplum	Command	Center

	Running	Greenplum	Command	Center	2.x	in	Parallel	With	3.x

The	Greenplum	Workload	Manager	installer	is	included	in	the	Greenplum	Command	Center	installer.	Install	Workload	Manager	using	its	bundled
installer.	See	the		Greenplum	Workload	Manager	documentation 	for	instructions	to	run	the	Greenplum	Workload	Manager	installer.



©	Copyright	Pivotal	Software	Inc,	2013-2016 7 3.1.1

http://gpcc.docs.pivotal.io/latest/gp-wlm/topics/gpwlm-docs.html
https://network.pivotal.io

	

Downloading	and	Running	the	Greenplum	Command	Center	Installer

	Download	and	Run	the	Installer
	Important:	The	 gpadmin 	user	owns	and	executes	the	Greenplum	Command	Center	software,	which	is	installed	in	the	 /usr/local 	directory	by	default.
Before	you	begin	installing,	ensure	that	the	 gpadmin 	user	has	write	permission	in	the	directory	where	you	will	install	the	software.	Be	sure	to	prepare	the
standby	master	host	in	the	same	way.	Alternatively,	you	can	run	the	installer	as	 root 	and,	after	installation,	change	the	owner	of	the	installation	directory
and	its	contents	to	 gpadmin .

Follow	these	steps	as	 gpadmin 	to	download	and	install	the	Greenplum	Command	Center	software.

1.	 Download	the	Greenplum	Command	Center	installer	file	from	the	Greenplum	Database	section	of		Pivotal	Network .	Installer	files	are	available	for
Linux	64-bit	platforms.

2.	 Unzip	the	installer	file.

$	unzip	greenplum-cc-web-3.X.X-LINUX-x86_64.zip

3.	 Launch	the	installer	with	 bash :

$	/bin/bash	greenplum-cc-web-3.X.X-LINUX.bin

4.	 Read	through	the	license	agreement.	When	you	reach	the	bottom,	type	 yes 	to	accept	the	license	agreement.

5.	 The	installer	prompts	you	to	provide	an	installation	path.	Press		Enter	to	accept	the	default	installation	path	(/usr/local/greenplum-cc-web-X.X.X),	or
enter	an	absolute	path	to	another	install	location.	You	must	have	write	permission	in	the	location	you	specify.

6.	 The	installer	then	asks	if	you	want	to	install	on	the	standby	master.
Enter	 no 	if	you	do	not	want	to	install	the	software	to	the	standby	master	host	now.	You	can	install	the	software	to	the	standby	master	later
using	the	 gpccinstall 	utility.	See		Install	Greenplum	Command	Center	Software	on	Additional	Hosts.
Enter	 yes 	to	install	the	Greenplum	Command	Center	software	on	the	standby	master	host,	then	enter	the	name	of	the	host.

7.	 The	installer	completes	with	a	summary	of	the	actions	that	were	performed.

	Note:
If	you	have	performed	the	previous	steps	as	any	user	other	than	 gpadmin ,	you	need	to	change	ownership	and	permissions	of	the	installation	directory
before	you	continue.

Change	the	ownership	of	the	installation	directory:

#	chown	-R	gpadmin:gpadmin	greenplum-cc-web-X.X.X

Change	the	permissions	of	the	installation	directory:

#	chmod	-R	755	greenplum-cc-web-X.X.X

	Install	Greenplum	Command	Center	Software	on	Additional	Hosts
Follow	the	steps	in	this	section	to	install	the	Greenplum	Command	Center	software	on	the	standby	master	host	or	on	other	hosts	where	you	want	to	run
Greenplum	Command	Center	console	instances.

Run	the	 gpccinstall 	utility	as	the	 gpadmin 	user	on	the	host	where	you	installed	the	Greenplum	Command	Center	software.

1.	 Create	a	text	file	containing	the	names	of	the	standby	master	host	and	other	hosts	where	the	software	is	to	be	installed,	one	name	per	line.	Do	not
include	the	name	of	the	host	where	you	ran	the	installer.	Hostnames	must	be	resolvable	in	DNS.	For	example:

smdw
gpspare

©	Copyright	Pivotal	Software	Inc,	2013-2016 8 3.1.1

https://network.pivotal.io

2.	 Source	the	Greenplum	Database	and	Command	Center	path	files.

$	source	/usr/local/greenplum-db/greenplum_path.sh
$	source	/usr/local/greenplum-cc-web/gpcc_path.sh

3.	 As	 gpadmin ,	run	the	 gpccinstall 	utility	to	install	Command	Center	on	all	hosts	listed	in	the	host	file	you	created.

$	gpccinstall	-f	hostfilename

where	 hostfilename 	is	the	name	of	the	host	file	you	created.

©	Copyright	Pivotal	Software	Inc,	2013-2016 9 3.1.1

	

About	the	Command	Center	Installation
The	installation	and	setup	procedures	create	a	software	installation	directory	and	a	directory	containing	files	and	folders	to	support	each	Greenplum
Command	Center	Console	instance.

Software	Installation	Directory
The	following	files	and	first-level	subdirectories	are	copied	into	the	installation	folder	that	you	specified	when	you	installed	Greenplum	Command	Center
Console.	This	location	is	referred	to	as	 $GPPERFMONHOME .

gpcc_path.sh 	–	file	containing	environment	variables	for	Command	Center

bin 	–	program	files	for	Greenplum	Command	Center

etc 	–	contains	 openssl.cnf 	file

gpcc-wlm-<version>-<platform>.bin 	–	installer	for		Greenplum	Workload	Manager 

instances 	–	contains	a	subdirectory	of	resources	for	each	Greenplum	Database	instance	monitored	by	the	console

lib 	–	library	files	for	Greenplum	Command	Center

open_source_licenses_GPCC.txt 	–	licenses	for	open	source	components	used	by	Greenplum	Command	Center

www 	–	web	server	and	user	interface	files

Instances	Directory
The	 $GPPERFMONHOME/instances 	directory	contains	subdirectories	named	for	each	instance	created	during	console	setup.	The	 conf 	subdirectory
contains	configuration	files	that	you	can	edit.	Other	files	and	folders	are	used	by	the	web	services	for	the	instance,	and	should	not	be	modified	or	deleted.

Each	subdirectory	contains	the	following	files	and	first-level	subdirectories:

conf 	–	multi-cluster	configuration	file,	 clusters.conf

webserver 	–	web	server	logs	for	this	instance	and	symbolic	links	to	web	server	files	in	the	installation	directory

©	Copyright	Pivotal	Software	Inc,	2013-2016 10 3.1.1

http://docs-gpcc-staging.cfapps.io/310/gp-wlm/topics/gpwlm-docs.html

	

Setting	the	Greenplum	Command	Center	Environment
To	enable	the	 gpadmin 	user	to	execute	Command	Center	utilities	such	as	 gpcmdr ,	follow	these	steps	to	set	up	the	Greenplum	Command	Center
environment.

1.	 Add	the	 GPPERFMONHOME 	environment	variable	to	your	startup	shell	profile	(such	as	 ~/.bashrc).	Set	the	variable	to	the	Greenplum	Command
Center	home	directory.

GPPERFMONHOME=/usr/local/greenplum-cc-web
source	$GPPERFMONHOME/gpcc_path.sh	

Ensure	that	the	 $GPPERFMONHOME/gpcc_path.sh 	file	has	entries	for	the	 greenplum_path.sh 	file	and	the	 MASTER_DATA_DIRECTORY 	environment
variable.	See	the	Greenplum	Database	Installation	Guide	for	details.

2.	 Save	and	source	the	 .bashrc 	file:

$	source	~/.bashrc

©	Copyright	Pivotal	Software	Inc,	2013-2016 11 3.1.1

	

Creating	the	gpperfmon	Database
This	topic	describes	how	to	create	the	Command	Center	 gpperfmon 	database	and	enable	the	data	collection	agents.	This	task	must	be	completed	one
time	for	the	Greenplum	Database	system,	before	you	create	a	Greenplum	Command	Center	instance.

When	the	data	collection	agents	are	enabled,	their	processes	are	started	and	stopped	(using	 gpstart 	and	 gpstop)	on	the	Greenplum	segment	hosts	along
with	the	Greenplum	Database	server	processes.

Greenplum	provides	a	 gpperfmon_install 	utility	that	performs	the	following	tasks:

Creates	the	Command	Center	database	(gpperfmon).

Creates	the	Command	Center	superuser	role	(gpmon).

Configures	Greenplum	Database	server	to	accept	connections	from	the	 gpmon 	role	(edits	the	 pg_hba.conf 	and	 .pgpass 	files).

Sets	the	Command	Center	server	configuration	parameters	in	the	Greenplum	Database	server	 postgresql.conf 	files.

The	 gpperfmon_install 	utility	and	the	agents	are	part	of	the	Greenplum	Database	software	distribution.	The	tasks	in	this	topic	can	be	performed	before	or
after	the	Command	Center	software	is	installed.

	Enabling	the	Collection	Agents
1.	 Log	in	to	the	Greenplum	master	host	as	the	 gpadmin 	user.

$	su	-	gpadmin

2.	 Source	the	path	file	from	the	Greenplum	Database	installation	directory:

#	source	/usr/local/greenplum-db/greenplum_path.sh

3.	 Run	the	 gpperfmon_install 	utility	with	the	 --enable 	option.	You	must	supply	the	connection	port	of	the	Greenplum	Database	master	server	process,
and	set	the	password	for	the	 gpmon 	superuser	that	will	be	created.	For	example:

$	gpperfmon_install	--enable	--password	changeme	--port	5432

	Note:
The	 gpperfmon_install 	utility	creates	entries	for	the	 gpmon 	user	in	the	 $MASTER_DATABASE/pg_hba.conf 	file.	See		gpmon	User	Authentication	for	notes
about	restricting	the	gpmon	user’s	access	to	databases.
The	password	you	specify	is	saved	in	a	 .pgpass 	file	in	the	 gpadmin 	user’s	home	directory.	See		Changing	the	gpmon	Password	for	steps	to	change
the	 gpmon 	password.

4.	 When	the	utility	completes,	restart	Greenplum	Database	server.	The	data	collection	agents	will	not	start	until	the	database	is	restarted.

$	gpstop	-r

5.	 Using	the	 ps 	command,	verify	that	the	data	collection	process	is	running	on	the	Greenplum	master.	For	example:

$	ps	-ef	|	grep	gpmmon

6.	 Run	the	following	command	to	verify	that	the	data	collection	processes	are	writing	to	the	Command	Center	database.	If	all	of	the	segment	data
collection	agents	are	running,	you	should	see	one	row	per	segment	host.

$	psql	gpperfmon	-c	'SELECT	*	FROM	system_now;'

The	data	collection	agents	are	now	running,	and	your	Greenplum	system	now	has	a	gpperfmon	database	installed.	This	is	the	database	where	Command
Center	data	is	stored.	You	can	connect	to	it	as	follows:

$	psql	gpperfmon

©	Copyright	Pivotal	Software	Inc,	2013-2016 12 3.1.1

	Configuring	a	Standby	Master	Host	(if	enabled)
1.	 Copy	the	 $MASTER_DATA_DIRECTORY/pg_hba.conf 	file	from	your	primary	master	host	to	your	standby	master	host.	This	ensures	that	the	required
connection	options	are	also	set	on	the	standby	master.

2.	 Copy	your	 ~/.pgpass 	file	from	your	primary	master	host	to	your	standby	master	host.	This	file	usually	resides	in	the	 gpadmin 	user’s	home
directory.	Note	that	the	permissions	on	 .pgpass 	must	be	set	to	600	(for	example:	 chmod 0600 ~/.pgpass).

	gpmon	User	Authentication
The	 gperfmon_install 	utility	adds	the	 gpmon 	user	to	the	 pg_hba.conf 	authorization	configuration	file	entries	allowinglocal	connections	to	any	database	in
the	Greenplum	cluster.	Greenplum	Command	Center	requires	that	the	 gpmon 	user	have	access	to	 gpperfmon 	and	every	database	that	Command	Center
will	monitor.	Since	the	 gpmon 	role	is	a	Greenplum	Database	superuser,	you	may	wish	to	restrict	the	role	from	accessing	other	databases.	Edit	the	
$MASTER_DATA_DIRECTORY/pg_hba.conf 	and	edit	these	lines:

local				gpperfmon			gpmon									md5
host					all									gpmon									127.0.0.1/28				md5

List	 gpperfmon 	and	the	databases	you	want	to	monitor	with	Command	Center	in	the	second	field:

local				gpperfmon,userdb1,userdb2			gpmon																									md5
host					gpperfmon,userdb1,userdb2			gpmon									127.0.0.1/28				md5

See		Changing	the	gpmon	Password	for	steps	to	change	the	 gpmon 	user’s	password.

©	Copyright	Pivotal	Software	Inc,	2013-2016 13 3.1.1

	

Upgrading	Greenplum	Command	Center
This	section	provides	steps	for	upgrading	Pivotal	Greenplum	Command	Center	to	a	new	version.

Upgrading	Greenplum	Command	Center	requires	installing	the	new	distribution,	and	then	migrating	Command	Center	instances	from	a	previous
installation.

A	new	Greenplum	Command	Center	software	release	may	be	installed	in	the	same	parent	directory	as	the	current	release,	by	default	 /usr/local .	The
installer	updates	the	symbolic	link	 greenplum-cc-web 	to	point	to	the	new	release	directory	and	leaves	the	old	release	directory	in	place.	After	the	software
is	installed,	run	the	 gpcmdr	--

migrate
	command	to	recreate	your	Command	Center	instances.

	Install	the	New	Software	Release
1.	 Log	in	as	the	 gpadmin 	user.

2.	 Source	the	 greenplum_path.sh 	and	 gpcc_path.sh 	files	from	the	current	release:

$	source	/usr/local/greenplum-db/greenplum_path.sh
$	source	/usr/local/greenplum-cc-web/gpcc_path.sh

3.	 Download	the	latest	Command	Center	release	from		Pivotal	Network .	Installer	files	are	available	for	Linux	64-bit	platforms,	and	have	names	in	the
format:

greenplum-cc-web-X.X.X-PLATFORM.zip

4.	 Unzip	the	installer	file.	For	example:

#	unzip	greenplum-cc-web-X.X.X-PLATFORM.zip

5.	 Launch	the	installer	for	the	new	release	with	the	bash	shell:

$	/bin/bash	greenplum-cc-web-X.X.X-PLATFORM.bin

	Note:	The	installer	requires	write	permission	in	the	installation	directory	(/usr/local ,	by	default).	If	the	 gpadmin 	user	does	not	have	write	permission
in	the	installation	directory,	run	the	installation	as	 root .	You	will	need	to	change	file	ownership	and	permissions	after	the	software	is	installed.

6.	 Read	through	the	license	agreement.	When	you	reach	the	bottom,	type	 yes 	to	accept	the	license	agreement.

7.	 The	installer	prompts	you	to	provide	an	installation	path.	Enter	a	full	path	or	press		ENTER	to	accept	the	default,	 /usr/local .	You	must	have	write
permission	in	the	directory	you	specify.

8.	 If	you	ran	the	installation	as	 root 	or	any	user	other	than	 gpadmin ,	change	the	ownership	and	permissions	of	the	installation	directory:

#	chown	-R	gpadmin:gpadmin	/usr/local/greenplum-cc-web-versionx.x
#	chmod	-R	755	/usr/local/greenplum-cc-web-versionx.x

Change	to	the	 gpadmin 	user	before	you	continue	to	the	next	step:

#	su	-	gpadmin

9.	 Ensure	that	you	have	a	current	host	file	listing	the	names	of	all	of	the	other	hosts	participating	in	the	Greenplum	Database	cluster,	including	the
standby	master	host.	The	host	names	must	be	resolvable	in	DNS.

10.	 As	 gpadmin ,	run	the	 gpccinstall 	utility	to	install	the	new	Command	Center	files	on	all	hosts	listed	in	the	host	file:

$	gpccinstall	-f	hostfilename

where	 hostfilename 	is	the	name	of	the	host	file	you	created.

©	Copyright	Pivotal	Software	Inc,	2013-2016 14 3.1.1

https://net.pivotal.io

	Migrate	Command	Center	Instances
After	the	new	Command	Center	software	is	installed,	migrate	your	instances	by	running	the	 gpcmdr	--

migrate
	command.

To	migrate	all	instances	from	a	previous	installation,	run	 gpcmdr	--
migrate

	with	no	arguments.	For	example:

$	gpcmdr	--migrate	

To	migrate	a	single	instance,	run	 gpcmdr	--migrate
<instance_name>

	and,	when	prompted,	provide	its	full	installation	path.	For	example:

$	gpcmdr	--migrate	myinstance

Custom	changes	to	the	 ssh-wrapper 	file	are	not	handled	by	instance	migration.	See		Configuration	File	Reference	for	information	about	the	 ssh-wrapper
file.	If	you	have	set	a	custom	 ssh 	path	in	this	file,	you	must	copy	it	to	the	current	installation.

For	example:

cp	/usr/local/greenplum-cc-web-3.0.0/bin/ssh-wrapper	/usr/local/greenplum-cc-web/bin

See		Creating	Greenplum	Command	Center	Console	Instances	for	instructions	to	create	new	instances	with	 gpcmdr	--
setup

.

©	Copyright	Pivotal	Software	Inc,	2013-2016 15 3.1.1

	

Uninstalling	Greenplum	Command	Center
To	uninstall	Greenplum	Command	Center,	you	must	stop	both	the	Command	Center	Console	and	disable	the	data	collection	agents.	Optionally,	you	may
also	remove	any	data	associated	with	Greenplum	Command	Center	by	removing	your	Command	Center	Console	installation	and	the	Command	Center
database.

1.	 Stop	Command	Center	Console	if	it	is	currently	running.	For	example:

$	gpcmdr	--stop

2.	 Remove	the	Command	Center	installation	directory	from	all	hosts.	For	example:

$	rm	-rf	/usr/local/greenplum-cc-web-version

3.	 Disable	the	Data	Collection	Agents.

a.	 Log	in	to	the	master	host	as	the	Greenplum	administrative	user	(gpadmin):

$	su	-	gpadmin

b.	 Edit	the	 $MASTER_DATA_DIRECTORY/postgresql.conf 	file	and	disable	the	data	collection	agents:

gp_enable_gpperfmon	=	off

c.	 Remove	or	comment	out	the	gpmon	entries	in	 pg_hba.conf .	For	example:

#local					gpperfmon					gpmon					md5		
#host						gpperfmon					gpmon				0.0.0.0/0				md5

d.	 Drop	the	Command	Center	superuser	role	from	the	database.	For	example:

$	psql	template1	-c	'DROP	ROLE	gpmon;'

e.	 Restart	the	Greenplum	Database	instance:

$	gpstop	-r

f.	 Clean	up	any	uncommitted	Command	Center	data	and	log	files	that	reside	on	the	master	file	system:

$	rm	-rf	$MASTER_DATA_DIRECTORY/gpperfmon/data/*	
$	rm	-rf	$MASTER_DATA_DIRECTORY/gpperfmon/logs/*

g.	 If	you	do	not	want	to	keep	your	historical	Command	Center	data,	drop	the	gpperfmon	database:

$	dropdb	gpperfmon

©	Copyright	Pivotal	Software	Inc,	2013-2016 16 3.1.1

	

Running	Greenplum	Command	Center	2.x	in	Parallel	With	3.x
To	use	features	of	GPCC	2.x	not	available	in	3.x,	you	can	run	a	GPCC	2.x	instance	on	a	separate	port	on	the	master	host	and	manage	it	independently	from
GPCC	3.x.

	Continue	Running	an	Installed	GPCC	2.x	Version
After	you	install	GPCC	3.x:

1.	 Run	 gpcmdr	--status 	to	identify	an	available	port	that	is	not	in	use	by	a	GPCC	3.x	instance.

2.	 Change	the	symbolic	link	in	your	installation	directory	to	the	2.x	version:

$	ln	-sfn	/usr/local/greenplum-cc-web-2.x.x	/usr/local/greenplum-cc-web

3.	 Edit	 $GPPERFMONHOME/instances/<instance_name>/conf/lighttpd.conf .
Change	the	 server.port 	parameter	so	it	does	not	conflict	with	the	3.x	port.	For	example:

server.port	=	28090

Change	the	seven	occurrences	of	 greenplum-cc-web 	to	the	absolute	path	of	the	2.x	installation	directory.	For	example:

server.document-root	=	"/usr/local/greenplum-cc-web/./instances/demo/web"

becomes

server.document-root	=	"/usr/local/greenplum-cc-web-2.5.0/instances/demo/web"

4.	 Start	the	GPCC	2.x	instance:

$	gpcmdr	--start	<instance_name>

5.	 Change	the	symbolic	link	in	your	installation	directory	to	point	to	your	current	3.x	version:

$	ln	-sfn	/usr/local/greenplum-cc-web-3.0.0	/usr/local/greenplum-cc-web

	Install	GPCC	2.x	in	Addition	to	GPCC	3.x
After	you	install	GPCC	3.x:

1.	 Run	 gpcmdr	--status 	to	identify	an	available	port	not	in	use	by	a	GPCC	3.x	instance.

2.	 Download	the	GPCC	2.5.0	installer	from		Pivotal	Network .

3.	 Unzip	and	run	the	installer:

$	unzip	greenplum-cc-web-2.5.0-RHEL5-x86_64.zip	
$	bash	greenplum-ccweb-2.5.0-RHEL5-x86_64.bin

This	will	change	the	symlink	at	 /usr/local/greenplum-cc-web 	to	the	GPCC	2.5.0	installation	directory.
	Note:	Do	not	run	 gpccinstall ,	just	the	downloaded	installer	binary.

4.	 Create	a	GPCC	2.x	instance:

$	gpcmdr	--setup

Specify	a	port	that	is	not	used	by	any	existing	GPCC	3.x	instances.

5.	 Edit	 $GPPERFMONHOME/instances/<instance_name>/conf/lighttpd.conf .

©	Copyright	Pivotal	Software	Inc,	2013-2016 17 3.1.1

https://network.pivotal.io/products/pivotal-gpdb

Change	the	seven	references	to	the	 greenplum-cc-web 	symbolic	link	to	the	absolute	path	of	the	GPCC	2.x	installation	directory.	For	example:

	server.document-root	=	"/usr/local/greenplum-cc-web/./instances/demo/web"

becomes

	server.document-root	=	"/usr/local/greenplum-cc-web-2.5.0/instances/demo/web"

6.	 Start	the	GPCC	2.x	instance:

	$	gpcmdr	--start	<instance_name>

At	the	prompt	“Do	you	want	to	start	the	beta	server?”	enter	 N .

7.	 Change	the	symbolic	link	in	your	installation	directory	to	point	to	your	current	GPCC	3.x	version:

		$	ln	-sfn	/usr/local/greenplum-cc-web-3.0.0	/usr/local/greenplum-cc-web

	Managing	Concurrent	GPCC	2.x	and	3.x	Versions
The	 gpcmdr 	utility	manages	the	instances	for	the	version	of	GPCC	in	the	current	 gpcc_path.sh .	Assuming	your	.bashrc	or	other	source	file	contains	source	
$GPPERFMONHOME/gpcc_path.sh ,	to	switch	between	versions,	just	modify	the	symbolic	link	 greenplum-cc-web 	(in	the	 /usr/local 	directory,	by	default)	to	point
to	the	appropriate	version.

	To	manage	2.x	instances:

$	ln	-sfn	/usr/local/greenplum-cc-web-2.x.x	/usr/local/greenplum-cc-web

	To	manage	3.x	instances:

$	ln	-sfn	/usr/local/greenplum-cc-web-3.x.x	/usr/local/greenplum-cc-web

©	Copyright	Pivotal	Software	Inc,	2013-2016 18 3.1.1

	

Creating	Greenplum	Command	Center	Console	Instances
A	Command	Center	Console	instance	is	a	web	server	providing	an	HTML5	graphical	console	application	to	monitor	system	metrics	and	perform	some
administrative	tasks	for	a	single	Greenplum	Database	cluster.

The	Command	Center	Console	runs	on	the	gpmonws	web	server.	The	default	web	server	port	is	28080.	Configuration	files,	log	files,	and	runtime	files	for
each	Command	Center	instance	are	managed	in	a	subdirectory	of	the	 $GPPERFMON/instances 	directory.

If	you	have	multiple	Greenplum	Database	instances,	you	can	create	separate	Command	Center	Console	instances	for	each	of	them.	Each	separate	console
instance	operates	on	a	unique	port	and	has	its	own	unique	configuration	options.	A	multi-cluster	view	may	be	enabled	to	allow	you	to	view	status	for	all
clusters.	See		Enabling	Multi-Cluster	Support	for	more	information.

For	more	information	about	the	web	server,	see		Web	Server	Administration.

The	Command	Center	Console	supports	current	browser	versions	of	Chrome,	Safari,	Firefox,	and	Internet	Explorer.

	Before	You	Begin
Ensure	that	the	following	prerequisites	are	satisfied:

Greenplum	Command	Center	software	is	installed.	See		Install	the	Greenplum	Command	Center	Software.

The	gpperfmon	database	is	created	and	the	data	collection	agents	are	running.	See		Creating	the	gpperfmon	Database.

Any	certificates	or	Kerberos	keytab	files	needed	for	encryption	and	user	authentication	are	installed.	See		Securing	a	Greenplum	Command	Center
Console	Instance.

If	the	 gpmon 	user	is	to	be	authenticated	with	Kerberos,	install	the	keytab	file	for	the	 gpmon 	Kerberos	principal	on	the	Greenplum	master	and	standby
hosts	and	run	 kinit gpmon 	before	you	begin	to	create	the	Command	Center	Console	instance.	See		Securing	the	gpmon	Database	User	for	more
information.

The	 gpcmdr	--
setup

	command-line	utility	sets	up	the	Command	Center	instance.	The	command	can	be	run	interactively,	or	you	can	create	a	configuration

file	and	run	the	command	non-interactively.	If	you	use	a	configuration	file,	you	can	create	multiple	Command	Center	instances	at	once.

	Creating	an	instance	interactively

	Creating	an	instance	with	a	configuration	file

	Creating	the	Greenplum	Command	Center	Instance	(Interactive)
Follow	the	steps	below	to	create	a	new	Command	Center	Console	instance.	To	accept	the	displayed	default	values	for	any	parameters	at	configuration
time,	press	the		ENTER	key.	To	monitor	multiple	Greenplum	Database	clusters,	run	the	setup	utility	separately	to	create	an	instance	for	each	cluster.

1.	 Log	in	as	the	Greenplum	administrator	(gpadmin)	and	source	the	 $GPPERFMON/gpcc_path.sh 	file.

2.	 With	the	Greenplum	Database	instance	running,	launch	the	setup	utility.	For	example:

$	gpcmdr	--setup

3.	 Provide	an	instance	name	for	the	Greenplum	Database	instance	monitored	by	this	Console.

4.	 Provide	a	display	name	for	the	instance.	This	name	is	shown	in	the	Console	user	interface.	This	prompt	does	not	appear	if	the	master	host	is	remote.

5.	 Select	 y 	or	 n 	to	specify	if	the	Greenplum	Database	master	for	this	instance	is	on	a	remote	host.	Note	that	Console	performance	is	better	when	the
Console	and	Greenplum	Database	master	are	on	the	same	host.	If	the	master	host	is	remote,	enter	 y 	and	enter	the	hostname	or	IP	address	of	the
master	at	the	prompt.

6.	 Provide	the	port	number	for	the	Greenplum	Database	master	instance.

7.	 Provide	a	port	number	for	the	Command	Center	Console	web	server.	The	default	is	28080.

8.	 Enter	 y 	to	the	prompt	 Enable	kerberos	login	for	this	instance? 	to	use	Kerberos	authentication.	To	use	this	feature,	Kerberos	authentication	must	be
enabled	for	Greenplum	Database	and	the	Kerberos	administrator	must	have	created	a	keytab	file	for	Command	Center.	See		Enabling	Kerberos
Authentication	with	Greenplum	Command	Center	for	details.	If	you	enter	 n 	you	can	enable	Kerberos	authentication	later	using	the	 gpcmdr	--

©	Copyright	Pivotal	Software	Inc,	2013-2016 19 3.1.1

krbenable 	command.
If	you	choose	to	enable	Kerberos	authentication:

a.	 At	the	prompt	 Enter web server name for this instance: 	enter	the	name	of	the	host	from	the	Kerberos	principal.	The	principal	name	is
in	the	format	 HTTP/<host>@<realm> .	The	host	must	be	entered	in	the	same	format	as	the	Kerberos	principal	and	should	exclude	the	port
number.

b.	 At	the	prompt	 Enter the GPDB Kerberos service name: 	enter	the	name	of	the	Kerberos	service	principal	for	Greenplum	Database.
c.	 At	the	prompt	 Choose Kerberos mode: 	enter	the	number	of	the	Kerberos	mode	you	want	to	use.	See		Enabling	Authentication	With	Kerberos
for	a	description	of	these	options.

d.	 At	the	prompt	 Enter the path to the keytab file: 	enter	the	full	path	to	the	keytab	containing	the	web	server	principal.	If	you	are	setting
up	this	instance	on	the	Greenplum	master,	the	keytab	file	may	be	the	same	one	used	for	Greenplum	Database.

9.	 Enter	 y 	to	enable	SSL	connections	for	the	Command	Center	Console,	or	 n 	if	you	do	not	want	SSL.
	Note:	Because	database	login	information	is	sent	over	the	network,	it	is	strongly	recommended	to	use	SSL	to	encrypt	these	communications.
You	are	asked	to	specify	the	location	of	your	X509	certificate	file.	Enter	the	full	path	to	the	certificate	file.	The	path	you	enter	is	added	to	the	 app.conf

file.	n

10.	 Enter	 y 	or	 n 	to	specify	whether	you	want	this	installation	copied	to	a	standby	master.	If	you	enter	 y ,	you	are	prompted	for	the	standby	master
host	name.

11.	 Start	the	Console	and	log	in.	See		Connecting	to	the	Greenplum	Command	Center	Console.

12.	 You	can	also	configure	authentication	so	that	other	Greenplum	users	can	log	in	to	the	Console,	see		Configuring	Authentication	for	the	Command
Center	Console	for	details.

	Creating	the	Command	Center	Console	Instance	(Non-interactive)
It	can	be	useful	to	run	 gpcmdr	--

setup
	non-interactively,	taking	input	from	a	file.	For	example,	you	could	install	GPCC	and	create	Command	Center	instances

as	part	of	a	Greenplum	cluster	installation	script.	To	accomplish	this,	create	a	configuration	file	and	supply	it	to	the	 gpcmdr 	utility	using	the	 --config_file
option:

gpcmdr	--setup	--config_file	file

The	configuration	file	is	similar	to	a	Windows	INI	file,	containing	one	or	more	sections	beginning	with	a	section	header	in	square	braces.	Parameters	in	the
optional	 [DEFAULT] 	section	apply	to	all	subsequent	sections	and	may	be	overridden.	Each	section	other	than	 [DEFAULT] 	defines	a	Command	Center
Console	instance	to	create.

Parameters	are	specified	one-per-line	as	name-value	pairs	separated	with	equals	signs	(=)	or	colons	(:).	Comments	begin	with	a	number	sign	(#)	or
semicolon	(;)	and	continue	to	the	end	of	the	line.

Here	is	an	example	configuration	file:

[DEFAULT]
#	defaults	apply	to	all	instances
remote_db:	false
enable_copy_standby:	true
standby_master_host:	smdw
enable_kerberos:	false
enable_ssl:	true
enable_user_import_cert:	true
ssl_cert_file:	/etc/ssl/certs/cert.pem
enable_user_import_dhe:	false
enable_reuse_dhe:	true

[production]
master_hostname:	mdw
instance_name:	prod
display_name:	Production
master_port:	5432
web_port:	28080

[development]
master_hostname:	mdw
instance_name:	dev
enable_copy_standby:	false	;	override
display_name:	Development
master_port:	5532
web_port:	28090

©	Copyright	Pivotal	Software	Inc,	2013-2016 20 3.1.1

See		Setup	Configuration	File	for	a	detailed	description	of	the	setup	configuration	file	syntax	and	parameters.

	Start	the	Command	Center	Console	Instance
Start	the	Greenplum	Command	Center	Console	instance	by	entering:

gpcmdr	--start

If	you	do	not	specify	an	instance	name,	all	Command	Center	Console	instances	are	started.	To	start	a	particular	instance,	you	can	specify	the	name	of	the
instance.	For	example:

gpcmdr	--start	instance_name

See		Administering	Greenplum	Command	Center	for	a	complete	list	of	administrative	commands.

©	Copyright	Pivotal	Software	Inc,	2013-2016 21 3.1.1

	

Connecting	to	the	Greenplum	Command	Center	Console
Open	the	Command	Center	Console	in	a	supported	browser	using	the	correct	hostname	and	port.	For	example,	to	open	a	Command	Center	instance
running	on	port	28080	on	the	local	host	with	SSL,	enter	the	following	URL	in	the	browser:

https://<master_host_name>:28080/

At	the	login	prompt,	enter	the	user	name	and	password	of	a	Greenplum	role	that	has	been	properly	configured	to	allow	authentication	to	Greenplum
Command	Center,	then	click		Login.	This	opens	the	Dashboard	page	of	the	Command	Center	Console,	which	provides	a	graphical	system	snapshot	and	a
summary	view	of	active	queries.	See	the		Dashboard	for	information	about	the	Dashboard	view.

©	Copyright	Pivotal	Software	Inc,	2013-2016 22 3.1.1

	

Greenplum	Command	Center	User	Guide
The	Greenplum	Command	Center	web	interface	is	a	management	tool	that	provides	system	status	and	query	monitoring	facilities	for	Greenplum
Database	administrators	and	users.

Command	Center	views	allow	you	to	instantly	view	the	overall	status	of	the	Greenplum	Database	system.	You	can	drill	down	to	see	details	about	hosts,
database	segments,	queries,	and	CPU,	memory,	and	disk	resource	utilization.

The	following	topics	describe	the	information	displayed	on	each	Command	Center	view.

		Dashboard
The	Dashboard	displays	when	you	first	log	in	to	the	Command	Center.	It	shows	an	overview	of	the	status	of	the	Greenplum	Database	cluster	the
Command	Center	manages	and	provides	easy	access	to	detailed	information	about	any	aspect	of	system	status.

		Query	Monitor
View	current	running	and	queued	queries.	Select	a	query	to	view	its	query	text	and	execution	plan.	With	proper	permissions,	choose	queries	and	cancel
them.

		Host	Metrics
View	real-time	statistics	by	server	in	a	table	format.

		Cluster	Metrics
View	charts	of	current	and	recent	statistics	for	all	hosts	(excluding	master	and	standby).

		History
View	queries	and	historical	charts	of	statistics	for	a	selected	time	period,	optionally	filtered	by	database	and	user.

		System>Segment	Status
View	a	status	summary	for	all	primary	and	mirror	segments	and	details	for	each	segment.

		System>Storage	Status
View	the	current	percentage	disk	space	in	use	for	master	and	segment	hosts,	a	historical	chart	of	segment	host	disk	usage,	and	current	disk	usage	by
host.

		Admin>Permissions
View	permissions	levels	for	Command	Center	users.	Users	with	Admin	permission	can	change	permission	levels.

		Admin>Authentication
View	the	Greenplum	Database	 pg_hba.conf 	host-based	authentication	file.	Users	with	Admin	permission	can	edit	the	file.

©	Copyright	Pivotal	Software	Inc,	2013-2016 23 3.1.1

	

Dashboard
The		Dashboard	displays	when	you	first	sign	in	to	Pivotal	Greenplum	Command	Center.	The		Dashboard	provides	a	quick	view	of	the	current	system
status,	Segment	Health,	Queries,	CPU,	Memory,	and	Disk	usage.	Clicking	on	a	panel	provides	more	detailed	information	about	the	metric.

	System	Information
The	following	system	information	is	displayed	at	the	top	of	the	page.

	Uptime
The	elapsed	time	since	the	Greenplum	Database	system	was	last	started.

	GPDB	Version
The	version	of	the	Greenplum	Database	software	the	monitored	cluster	is	running.

	Connections
The	number	of	active	Greenplum	Database	sessions	(client	connections).

	Last	Sync
Date	and	time	the	data	was	last	synchronized.	The	Command	Center	user	interface	updates	views	with	live	data	every	15	seconds.

	System	Summary
The		Segment	Health	section	of	the	Dashboard	provides	a	quick	overview	of	the	status	of	the	Greenplum	Database	managed	by	this	instance	of	the
Command	Center.

Clicking	the		Segment	Health	panel	displays	the		Segment	Status	Command	Center	page.

	Database	State	is	the	current	state	of	the	Greenplum	Database	system.	The	state	can	be	one	of	the	following:

	Normal:	The	database	is	functioning	with	no	major	errors	or	performance	issues.

	Segment(s)	Down:	The	database	is	in	change-tracking	mode	or	resync	mode.	Overall	performance	and	system	reliability	is	greatly	reduced.	See	the
Pivotal	Greenplum	Database	System	Administrator	Guide	for	information	about	resolving	this	condition.

	Database	Unreachable:	The	Greenplum	Performance	Monitor	agent	cannot	connect	to	the	database.	The	database	is	likely	down.	See	the	Pivotal
Greenplum	Database	System	Administrator	Guide	for	troubleshooting	information.

	Unbalanced:	Some	segments	are	not	running	in	their	preferred	roles.	That	is,	primaries	are	running	as	mirrors	and	mirrors	are	running	as	primaries,
resulting	in	unbalanced	processing.

	Resyncing:	The	database	is	performing	a	recovery	or	rebalance	operation.

The	bar	graph	in	the		Segment	Health	section	shows	the	up	or	down	status	of	all	database	segments	in	your	Pivotal	Greenplum	Database	system.	A	color
indicator	and	associated	number	indicate	the	number	of	database	segments	that	are	currently	in	that	particular	state.	Segments	can	have	the	following
states:

	Up	(Green)

	Down	(Red)

	Disk	Usage	Summary
This	chart	displays	total	disk	usage	and	disk	available	for	the	Greenplum	master	host	and	segment	hosts	at	the	last	synchronization.	Hover	over	the	chart
to	see	the	amount	of	disk	used,	free,	and	total.

	Queries
This	graph	displays	a	summary	view	of	active	and	queued	queries	for	the	last	60	minutes.	Click	on	the	colored	dot	next	to	the		Running	or		Queued	label	to
toggle	the	line	on	or	off.	At	least	one	line	must	be	visible	at	all	times.	Hover	over	the	graph	to	display	the	number	of	queries	for	each	visible	line	at	that
point	in	time.

©	Copyright	Pivotal	Software	Inc,	2013-2016 24 3.1.1

	CPU
This	graph	displays	average	CPU	usage	across	the	entire	cluster,	for	the	last	60	minutes.	The	graph	displays	separate	lines	for	system	processes	and	user
processes.	The	user	CPU	usage	includes	the	Greenplum	database	master,	standby,	and	segment	processes.	Click	on	the	colored	dot	next	to	the		System	or
	User	label	to	toggle	that	line	on	or	off.	At	least	one	line	must	be	visible	at	all	times.

Hovering	the	cursor	over	a	line	in	the	graph	displays	a	small	window	with	the	percentage	of	CPU	used	at	that	point	in	time	for	the	visible	lines	and	the
total	if	both	the	system	and	user	lines	are	visible.

	Memory
This	graph	displays	the	average	percent	of	memory	used	across	the	entire	cluster	over	the	last	60	minutes.	Hover	over	the	line	to	display	the	percent	of
memory	used	at	that	point	in	time.

	Alerts
Admin	and	Operator	permission	levels	only

The		Alerts	panel	displays	recent	messages	from	the	Greenplum	Database	 pg_log 	log	file.	The	panel	is	updated	at	each	synchronization.	Filter	the
messages	by	severity	level	using	the	controls	at	the	top	right	of	the	panel.

©	Copyright	Pivotal	Software	Inc,	2013-2016 25 3.1.1

	

Query	Monitor
The		Query	Monitor	view	allows	you	to	view	detailed	information	for	active	queries	running	on	the	Greenplum	Database	system.	Users	with	Admin	or
Operator	permission	can	see	and	cancel	all	users’	queries.

Data	is	collected	on	currently	running	queries	and	the	query	monitor	metrics	are	updated	every	15	seconds.	The	time	of	the	last	update	and	a	graphical
timer	showing	the	time	remaining	before	the	next	update	are	displayed	at	the	top	of	the	page.

With	the	information	available	in	this	view,	Greenplum	Database	administrators	can	easily:

Understand	how	the	system	is	being	used	—	both	in	real-time	and	trending	over	time.

Identify	and	diagnose	problem	queries	while	they	are	running,	detect	skew,	find	runaway	queries,	and	so	on.

Review	and	balance	the	query	load	on	the	system	by	better	optimizing	and	scheduling	the	query	load.

Cancel	queries	that	disrupt	system	performance.

	Query	Metrics
The	Query	Monitor	table	displays	the	following	columns	for	queries.

Query	ID
An	identification	string	for	the	query.	In	the	Console,	this	looks	like	“1295397846-56415-2”.	Command	Center	generates	this	ID	by	combining	the
query	record’s	 tmid ,	 ssid ,	and	 ccnt 	fields.	(See		queries_*	in	the	Command	Center	Database	Reference.)

Status
The	status	of	the	query.	This	can	be	one	of	the	following:

Queued:	the	query	has	not	yet	started	to	execute

Running:	execution	has	started,	is	not	yet	complete

Done:	completed	successfully

Cancelling:	cancel	request	sent,	cancel	pending

Cancelled:	terminated,	no	longer	running

User
The	Greenplum	Database	user	who	submitted	the	query.

Database
The	name	of	the	database	that	was	queried.

Submit	Time
The	time	the	query	was	submitted	to	the	query	planner.

Queue	Time
The	amount	of	time	the	query	has	been	(or	was)	in	queue	awaiting	execution.

Run	Time
The	amount	of	time	since	execution	began.

CPU	%
(Active	queries	only.)	Current	CPU	percent	average	for	all	processes	executing	this	query.	The	percentages	for	all	processes	running	on	each
segment	are	averaged,	and	then	the	average	of	all	those	values	is	calculated	to	render	this	metric.	Current	CPU	percent	average	is	always	zero	in
historical	and	tail	data.

CPU	Skew
The	amount	of	CPU	skew.	CPU	skew	occurs	when	query	executor	processes	for	one	segment	use	a	disproportionate	amount	of	CPU	compared	to
processes	for	other	segments	executing	the	query.	This	value	is	the	coefficient	of	variation	for	the	CPU	used	by	processes	running	this	query	on	each
segment,	multiplied	by	100.	For	example,	a	value	of	.95	is	shown	as	95.

Row	Skew
A	measure	of	row	skew	in	the	system.	Row	skew	occurs	when	one	segment	produces	a	disproportionate	number	of	rows	for	a	query.	This	value	is
the	coefficient	of	variation	for	the	Rows	Out	metric	of	all	iterators	across	all	segments	for	this	query,	multiplied	by	100.	For	example,	a	value	of	.95	is
shown	as	95.

©	Copyright	Pivotal	Software	Inc,	2013-2016 26 3.1.1

Queue
The	name	of	the	resource	queue	for	the	query.

Priority
Each	query	inherits	the	priority	assigned	to	its	resource	queue.	For	more	information	about	Resource	Queues	and	Query	Plans,	refer	to	the
Greenplum	Database	Administrator	Guide.

	Using	the	Query	Monitor	Controls
Click	a	column	heading	to	sort	the	rows	on	that	column	in	ascending	or	descending	order.

Click	the	checkbox	at	the	left	of	a	row	to	choose	a	query	to	cancel	or	export.	Click	the	checkbox	in	the	heading	row	to	choose	all	queries.

Click		Cancel	Query	to	cancel	selected	queries.

Click		Export	to	download	a	comma-separated	values	(CSV)	text	file	containing	rows	for	the	selected	queries.	When	no	queries	are	selected,	all	rows
are	exported.	The	default	file	name	is	 spreadsheet.csv .

Click	any	query	ID	to	see	the		Query	Details ,	including	metrics,	the	text	of	the	query,	and	the	query	plan.

©	Copyright	Pivotal	Software	Inc,	2013-2016 27 3.1.1

http://docs-gpcc-staging.cfapps.io/310/gpcc/topics/ui/query-details.html

	

Host	Metrics
The		Host	Metrics	page	displays	a	table	of	the	hosts	in	the	cluster	with	statistics	collected	at	the	most	recent	quantum	interval.	At	the	top,		Last	Sync
displays	the	time	the	statistics	were	last	updated.

Click	a	column	header	to	sort	the	table	by	that	column.	Click	again	to	toggle	between	ascending	and	descending	sort.	Master	and	standby	hosts	are	not
included	in	the	sort	and	are	always	displayed	following	the	sorted	list	of	segment	hosts.

For	each	server,	the	following	columns	are	displayed:

Hostname
The	hostname	name	of	the	server.

CPU	Total/Sys/User	(%)
The	total	percentage	of	CPU	in	use	is	displayed	next	to	a	graph	illustrating	the	CPU	used	for	system	and	user	processes.	Hover	over	the	table	cell	to
show	the	percentages	used	for	system	and	user	processes	and	the	percentage	CPU	idle.

Memory	In	Use	(%)
The	percentage	of	host	memory	in	use	is	displayed	next	to	a	graph	illustrating	the	memory	in	use	and	available.	Hover	over	the	table	cell	to	see
memory	used	and	available	in	gigabytes.

Memory	is	calculated	as	follows:

Total	=	MemTotal
Free	=	MemFree	+	Buffers	+	Cached
Used	=	Total	-	Free

Disk	R	(MB/s)	|	Skew
Disk	read	rate	in	megabytes	per	second	is	displayed	next	to	a	graph	of	calculated	disk	read	skew.	Hover	over	the	table	cell	to	see	a
Low/Medium/High	rating	for	disk	skew.

Disk	W	(MB/s)	|	Skew
Disk	write	rate	in	megabytes	per	second	is	displayed	next	to	a	graph	of	calculated	disk	write	skew.	Hover	over	the	table	cell	to	see	a
Low/Medium/High	rating	for	disk	write	skew.

Net	R	(MB/s)	|	Skew
Network	read	rate	in	megabytes	per	second	is	displayed	next	to	a	graph	of	calculated	network	read	skew.	Hover	over	the	table	cell	to	see	a
Low/Medium/High	rating	for	network	read	skew.

Net	W	(MB/s)	|	Skew
Network	write	rate	in	megabytes	per	second	is	displayed	next	to	a	graph	of	calculated	network	write	skew.	Hover	over	the	table	cell	to	see	a
Low/Medium/High	rating	for	network	write	skew.

About	Skew	Calculations
Disk	and	Network	skew	ratings	are	calculated	as	each	server’s	standard	deviation	from	the	mean	calculated	from	all	segment	hosts.

Low
Value	is	within	1	standard	deviation	from	the	mean.	(Note:	if	the	variance	of	the	set	is	less	than	3,	skew	is	considered	low	regardless	of	deviation
from	mean.)

Moderate
Value	is	between	1	and	2	standard	deviations	from	the	mean.

Very	High
Value	is	greater	than	3	standard	deviations	from	the	mean.

©	Copyright	Pivotal	Software	Inc,	2013-2016 28 3.1.1

	

Cluster	Metrics
The		Cluster	Metrics	page	shows	consolidated	statistics	for	all	segment	hosts	in	the	Greenplum	cluster.	Master	and	standby	master	hosts	are	excluded
from	the	metrics.

The	charts	display	metrics	for	the	last	time	period	set	by	the	control	in	the	top	right	corner	of	the	screen.

Use	the		Show/hide	Charts	control	to	choose	which	metrics	to	display.

Hover	over	any	of	the	charts	to	see	values	for	the	metrics	at	a	point	in	time	in	pop-up	boxes.	The	charts	are	synchronized	so	that	hovering	over	any	chart
shows	the	same	point	in	time	in	all	charts.

The	current	value	of	a	metric	is	shown	in	the	upper	right	corner	of	its	chart.

On	charts	with	multiple	metrics,	toggle	the	display	for	a	line	on	or	off	by	clicking	the	line’s	label	in	the	legend	at	the	top	right	of	the	chart.	At	least	one	line
must	be	displayed.	All	lines	are	redisplayed	at	the	next	quantum	interval.

The	page	has	charts	for	the	following	metrics:

Queries
The	number	of	queries	running	and	the	number	of	queries	queued	to	run.

CPU
The	percentage	CPU	used	by	system	processes	and	the	percentage	CPU	used	by	user	processes.

Memory
Percentage	of	memory	in	use.

Memory	is	calculated	as	follows:

Total	=	MemTotal
Free	=	MemFree	+	Buffers	+	Cached
Used	=	MemTotal	-	Free

Disk	I/O
Disk	read	and	write	rates	in	megabytes	per	second.

Network
Network	I/O	read	and	write	rates	in	megabytes	per	second.	Network	metrics	include	traffic	over	all	NICs	(network	interface	cards),	including
internal	interconnect	and	administrative	traffic.

Load
System	load	average	for	1-minute,	5-minute,	and	15-minute	periods.

Swap
Percentage	of	swap	space	used.

©	Copyright	Pivotal	Software	Inc,	2013-2016 29 3.1.1

	

Monitoring	Multiple	Greenplum	Database	Clusters
The	Greenplum	Command	Center	Multi-cluster	view	displays	health	status	for	multiple	Greenplum	Database	clusters.	The	charts	can	be	divided	into
categories.

Each	Greenplum	Database	cluster	that	appears	in	the	Multi-cluster	view	must	have	its	own	Command	Center	instance.	The	Multi-cluster	view	is	hosted	on
a	single,	designated	master	Command	Center	instance.	The	master	instance	retrieves	the	health	status	data	from	each	of	the	clusters’	Command	Center
instances.

Clicking	the	status	panel	for	a	cluster	loads	that	cluster’s	Command	Center	into	a	new	browser	window.	If	auto-login	is	enabled	in	the	multi-cluster
configuration	file,	the	login	screen	is	bypassed	and	the	Dashboard	is	displayed.

Multi-cluster	support	is	enabled	by	deploying	a	configuration	file	to	the	Command	Center	instance	directories.	See		Enabling	Multi-Cluster	Support	for
instructions	to	set	up	the	Multi-cluster	page.

By	default,	any	Command	Center	user	may	view	multi-cluster	status.	Access	to	clusters	can	be	restricted	in	the	multi-cluster	configuration	file.

The	Multi-cluster	view	displays	the	following	information	for	each	cluster.

Cluster	Name
The	name	for	the	cluster,	as	specified	in	the	multi-cluster	configuration	file.

Database	State
The	current	state	of	the	Greenplum	Database	cluster.	The	state	can	be	one	of	the	following:

	Normal:	The	database	is	functioning	with	no	major	errors	or	performance	issues.

	Segment(s)	Down:	The	database	is	in	change-tracking	mode	or	resync	mode.	Overall	performance	and	system	reliability	is	greatly	reduced.	See
the	Pivotal	Greenplum	Database	System	Administrator	Guide	for	information	about	resolving	this	condition.

	Database	Unreachable:	The	Greenplum	Performance	Monitor	agent	cannot	connect	to	the	database.	The	database	is	likely	down.	See	the
Pivotal	Greenplum	Database	System	Administrator	Guide	for	troubleshooting	information.

	Unbalanced:	Some	segments	are	not	running	in	their	preferred	roles.	That	is,	primaries	are	running	as	mirrors	and	mirrors	are	running	as
primaries,	resulting	in	unbalanced	processing.

	Resyncing:	The	database	is	performing	a	recoverty	or	rebalance	operation.

Uptime
The	elapsed	time	since	the	Greenplum	Database	system	was	last	started.

GPDB	Version
The	version	of	the	Greenplum	Database	software	each	monitored	cluster	is	running.

Connections
The	number	of	active	Greenplum	Database	sessions	(client	connections).

Active	Queries
The	number	queries	queued	or	currently	executing	in	the	database.

©	Copyright	Pivotal	Software	Inc,	2013-2016 30 3.1.1

	

History
The		History	page	allows	you	to	display	system	metrics	and	queries	executed	during	a	specified	time	period.	Queries	may	also	be	filtered	by	database
and/or	user.

Set	the	time	period	to	display	by	entering	dates	and	times	in	the		From	and		To	date	and	time	fields.	You	can	enter	dates	by	typing	them	into	the	date	field
or	by	choosing	from	the	pop-up	calendar.	Enter	24-hour	times	in	HH:MM	format.

To	restrict	queries	that	display	in	the	query	table	at	the	bottom	of	the	page,	enter	a	Greenplum	database	name	in	the		Database	field,	a	user	name	in	the
	User	field,	or	both.	Filtering	by	database	and	user	only	affects	the	queries	displayed	in	the	table.	The	metrics	displayed	in	charts	include	all	activity	during
the	selected	time	period.

Click		Search	to	display	results	that	match	your	criteria.

You	can	click	and	drag	on	a	chart	to	zoom	in	on	a	time	range.	Click		Search	to	update	the	query	list	and	charts	to	the	selected	range.

Scroll	charts	left	or	right	by	hovering	over	the	edge	of	the	chart	and	clicking	an	arrow.	Click	‹	or	›	to	move	in	half	steps.	Click	«	or	»	to	move	in	full	steps.

In	the	query	list,	select	or	hover	over	a	query	to	highlight	its	queued	and	run	time	in	the	charts.

Charts	of	the	following	metrics	are	available.	Show	or	hide	them	at	any	time	with	the	checklist	at	the	upper	right	of	the	view.

Queries
The	number	of	queries	running	and	the	number	of	queries	queued	to	run.

CPU
The	percentage	CPU	used	by	system	processes	and	the	percentage	CPU	used	by	user	processes.

Memory
Percentage	of	memory	in	use.

Disk	I/O
Disk	read	and	write	rates	in	megabytes	per	second.

Network
Network	I/O	read	and	write	rates	in	megabytes	per	second.	Network	metrics	include	traffic	over	all	NICs	(network	interface	cards),	including
internal	interconnect	and	administrative	traffic.

Load
System	load	average	for	1-minute,	5-minute,	and	15-minute	periods.

Swap
Percentage	of	swap	space	used.

	

Query	Metrics
The	Query	table	displays	queries	that	were	active	during	the	specified	time	period,	including	queries	that	started	before	or	finished	after	the	specified
time.	However,	queries	that	are	still	active	are	not	included	in	the	table;	these	queries	can	be	viewed	on	the		Query	Monitor	page.

The	query	table	has	the	following	columns:

Query	ID
An	identification	string	for	the	query.	In	the	Console,	this	looks	like	“1295397846-56415-2”.

Status
The	final	status	of	the	query.	This	can	be	one	of	the	following:

Done

Cancelled

User
The	Greenplum	Database	user	who	submitted	the	query.

Database
The	name	of	the	database	that	was	queried.

Submit	Time
The	time	the	query	was	submitted	to	the	query	planner.

©	Copyright	Pivotal	Software	Inc,	2013-2016 31 3.1.1

Queued	Time
The	amount	of	time	a	query	spent	in	the	queue	before	it	was	executed.

Run	Time
The	amount	of	time	the	query	required	to	produce	a	result.

End	Time
The	time	the	query	completed	or	was	cancelled.

CPU	Skew
The	amount	of	CPU	skew.	CPU	skew	occurs	when	query	executor	processes	for	one	segment	use	a	disproportionate	amount	of	CPU	compared	to
processes	for	other	segments	executing	the	query.	This	value	is	the	coefficient	of	variation	for	the	CPU	used	by	processes	running	this	query	on	each
segment,	multiplied	by	100.	For	example,	a	value	of	.95	is	shown	as	95.

Row	Skew
A	measure	of	row	skew	in	the	system.	Row	skew	occurs	when	one	segment	produces	a	disproportionate	number	of	rows	for	a	query.	This	value	is
the	coefficient	of	variation	for	the	Rows	Out	metric	of	all	iterators	across	all	segments	for	this	query,	multiplied	by	100.	For	example,	a	value	of	.95	is
shown	as	95.

Queue
The	name	of	the	resource	queue	for	the	query.

Priority
Each	query	inherits	the	priority	assigned	to	its	resource	queue.

For	more	information	about	Resource	Queues	and	Query	Plans,	refer	to	the	Greenplum	Database	Administrator	Guide.

©	Copyright	Pivotal	Software	Inc,	2013-2016 32 3.1.1

	

System
The		System	view	provides	system	metrics	for	individual	hosts	in	the	Greenplum	cluster	and	for	the	entire	cluster.	Click		Host	Metrics	to	display	metrics	for
each	host.	Click		Cluster	Metrics	to	display	consolidated	metrics	for	the	entire	cluster.

	Segment	Status

	Storage	Status

©	Copyright	Pivotal	Software	Inc,	2013-2016 33 3.1.1

	

Segment	Status
The		Segment	Status	page	provides	a	health	overview	for	the	Greenplum	Database	segments	and	details	for	each	primary	and	mirror	segment.

	Segment	Summary
Greenplum	Database	is	most	efficient	when	all	segments	are	operating	in	their	preferred	roles.	The		Segment	Summary	panel	tells	you	the	overall
segment	status	and	if	any	mirrors	are	acting	as	primaries.

The		Segment	Summary	panel	provides	the	following	information:

Database	State
The	database	state	can	be	one	of	the	following:

	Normal:	The	database	is	functioning	with	no	major	errors	or	performance	issues.

	Segment(s)	Down:	The	database	is	in	change-tracking	mode	or	resync	mode.	Overall	performance	and	system	reliability	is	greatly	reduced.	See
the	Pivotal	Greenplum	Database	System	Administrator	Guide	for	information	about	resolving	this	condition.

	Database	Unreachable:	The	Greenplum	Performance	Monitor	agent	cannot	connect	to	the	database.	The	database	is	likely	down.	See	the
Pivotal	Greenplum	Database	System	Administrator	Guide	for	troubleshooting	information.

	Unbalanced:	Some	segments	are	not	running	in	their	preferred	roles.	That	is,	primaries	are	running	as	mirrors	and	mirrors	are	running	as
primaries,	resulting	in	unbalanced	processing.

	Resyncing:	The	database	is	performing	a	recoverty	or	rebalance	operation.

Mirrors	Acting	as	Primary
The	number	of	mirror	segments	acting	as	primary	segments.

Recommended	Actions
Suggests	actions	to	perform	to	restore	the	cluster	to	balance.	These	include:

Recover	and	Rebalance

Rebalance

These	actions	are	executed	from	the	command	line	using	the	 gprecoverseg 	Greenplum	management	utility.	See	 gprecoverseg 	in	the	Pivotal
Greenplum	Database	Utility	Reference	for	more	information.

Total	Segments
The	total	number	of	primary	and	mirror	segments	in	the	Greenplum	cluster.

Segment	Hosts
The	total	number	of	segment	hosts	in	the	Greenplum	cluster.

	Segment	Health
The		Segment	Health	panel	contains	charts	for	Greenplum	Database	segments’	status,	replication	mode,	and	preferred	roles.

Status
Numbers	of	segments	that	are	down	and	up.

Replication	Mode
A	chart	that	shows	the	number	of	segments	in	each	of	the	possible	replication	modes.

Not	Syncing:	The	primary	segment	and	mirror	segment	are	active	and	all	changes	to	the	primary	segment	have	been	copied	to	the	mirror	using	a
file	block	replication	process.

Change	Tracking:	If	a	primary	segment	is	unable	to	copy	changes	to	its	mirror	segment	using	the	file	replication	process,	it	logs	the	unsent
changes	locally	so	they	can	be	replicated	when	the	mirror	again	becomes	available.	This	can	happen	if	a	mirror	segment	goes	down	or	if	a
primary	segment	goes	down	and	its	mirror	segment	automatically	assumes	the	primary	role.

Resyncing:	When	a	down	segment	is	brought	back	up,	administrators	initiate	a	recovery	process	to	return	it	to	operation.	The	recovery	process
synchronizes	the	segment	with	the	active	primary	and	copies	the	changes	missed	while	the	segment	was	down.

Synced:	Once	all	mirrors	and	their	primaries	are	synchronized,	the	system	state	becomes	synchronized.

©	Copyright	Pivotal	Software	Inc,	2013-2016 34 3.1.1

Preferred	Roles
The	red	portion	of	the	Preferred	Role	chart	shows	the	numbers	of	segments	that	not	operating	in	their	preferred	primary	or	mirror	roles.	If	the	chart	is	not
solid	green,	the	performance	of	the	Greenplum	cluster	is	not	optimal.

Primary	and	mirror	segments	are	distributed	evenly	among	the	segment	hosts	to	ensure	that	each	host	performs	an	equivalent	share	of	the	work	and
primary	segments	and	their	mirror	segments	reside	on	different	segment	hosts.	When	a	primary	segment	goes	down,	its	mirror	on	another	host	in	the
cluster	automatically	assumes	the	primary	role,	increasing	the	number	of	primary	segments	running	on	that	host.	This	uneven	distribution	of	the
workload	will	affect	query	performance	until	the	down	segment	is	restored	and	the	segments	are	returned	to	their	original,	preferred,	roles.

	Segment	Table
The	table	at	the	bottom	of	the		Segment	Status	page	contains	a	detailed	row	for	every	primary	and	mirror	segment	in	the	Greenplum	Cluster.	The	table
has	the	following	columns	for	each	segment:

Hostname
The	name	of	the	segment	host	where	the	segment	is	running.

Address
The	network	interface	on	the	segment	host	for	the	segment.

Port
The	port	number	assigned	to	the	segment.

DBID
The	unique	identifier	for	the	segment	instance.

ContentID
The	content	identifier	for	the	segment,	from	0	to	the	number	of	segments	minus	1.	A	primary	segment	and	its	mirror	have	the	same	ContentID.	The
master	and	standby	master,	which	have	ContentID	−1,	are	excluded	from	the	table.

Status
“UP”	if	the	segment	is	running,	“DOWN”	if	the	segment	has	failed	or	is	unreachable.

Role
The	segment’s	current	role,	either	“primary”	or	“mirror”.

Preferred	Role
The	segment’s	intended	role,	either	“primary”	or	“mirror”.

Replication	Mode
The	replication	status	for	the	segment.	See		Segment	Health	for	possible	values.

Last	Event|[Total]
The	date	and	time	of	last	segment	health-related	activity.	Click	to	display	a	list	of	recent	events.

©	Copyright	Pivotal	Software	Inc,	2013-2016 35 3.1.1

	

Storage	Status
The		Storage	Status	page	shows	current	historical	disk	usage	for	Greenplum	master	and	segment	hosts.

Disk	Usage	Summary
You	can	see	current	disk	space	in	use,	space	free,	and	total	space	in	the	Disk	Usage	Summary	panel.	Disk	space	metrics	for	the	segment	hosts	(GP
Segments)	and	the	master	(GP	Master)	are	shown	in	separate	bar	charts.

The	GP	Segments	bar	chart	shows	combined	disk	space	for	all	segments.

The	GP	Masters	bar	chart	shows	combined	disk	space	for	master	and	standby	master.

Hover	over	either	of	the	charts	to	see	the	space	used,	free,	and	total	in	gigabytes	and	as	a	percentage	of	the	total.

GP	Segments	Usage	History
The	GP	Segments	Usage	History	panel	presents	a	chart	of	percentage	of	disk	space	in	use	for	the	time	period	set	by	the	control	in	the	panel	header.

Hover	over	the	chart	to	see	the	percentage	disk	in	use	on	any	given	point.

Storage	Status	Table
The	Storage	Status	table	provides	current	disk	space	usage	metrics	for	each	host	and	by	data	directory	within	hosts.

©	Copyright	Pivotal	Software	Inc,	2013-2016 36 3.1.1

	

Admin
The		Admin	view	provides	the	ability	to	manage	authentication	and	authorization	for	Greenplum	Command	Center	Console	and	Greenplum	Database
users.

		Permissions
View	the	Greenplum	Command	Center	permission	level	for	Greenplum	Database	users.	Administrators	can	change	user’s	permission	levels.

		Authentication
View	the	Greenplum	Database	host-based	authentication	file	(pg_hba.conf).	Administrators	can	change	the	file.

©	Copyright	Pivotal	Software	Inc,	2013-2016 37 3.1.1

	

Permission	Levels	for	GPCC	Access
The		Permissions	Levels	for	GPCC	Access	screen	allows	users	with	Operator	Basic,	Operator,	or	Admin	permission	to	view	permissions	for	Command
Center	users.	Users	with	Admin	permission	can	set	permissions	for	all	users.

	Viewing	User	Permissions
Initially,	all	Greenplum	Database	login	users	are	included	in	the	list	with	their	current	permission	levels.

To	filter	by	role	name,	enter	all	or	part	of	the	user’s	database	role	name	in	the	Role	Name	field.	The	filter	performs	a	simple	substring	search	and
displays	users	with	matching	role	names.	Click	the		Role	Name	label	to	reverse	the	search	order.

To	filter	for	users	with	a	specific	permission	level,	choose	the	permission	level	from	the		Permission	Level	list.

Role	Name	and	Permission	Level	filters	can	be	used	together.

To	reset	the	filters,	remove	all	text	from	the	Role	Name	field	and	choose		Filter	by…	from	the		Permission	Level	list.

	Changing	User	Permission	Levels
Users	with	Admin	permission	can	change	permission	levels.

1.	 Use	the		Role	Name	and		Permission	Level	filters	to	display	the	roles	you	want	to	change.

2.	 Check	the	box	next	to	a	role	name	to	select	the	user,	or	check	the	box	in	the	heading	to	select	all	displayed	users.

3.	 Select	the	new	permissions	level	for	each	user	from	the	list	in	the		Permission	Level	column,	or	select	a	new	permission	level	for	all	selected	users
from	the		Change	Selected	to…	list.

©	Copyright	Pivotal	Software	Inc,	2013-2016 38 3.1.1

	

Authentication
The		System>Authentication	screen	allows	users	with	Operator	Basic,	Operator,	and	Admin	permission	to	view	the	Greenplum	Database	host-based
authentication	file,	 pg_hba.conf .

Users	with	Admin	permission	can	add,	remove,	change,	and	move	entries	in	the	file.	The	Command	Center	UI	validates	entries	to	ensure	correct	syntax.
Previous	versions	of	the	file	are	archived	so	that	you	can	restore	an	earlier	version	or	audit	changes.

See		Authentication	for	an	overview	of	user	authentication	options	for	Greenplum	Database	and	Greenplum	Command	Server.

See		pg_hba.conf	file 	in	the	PostgreSQL	documentation	for	a	detailed	description	of	the	contents	of	the	 pg_hba.conf 	file.

	Viewing	the	Host-Based	Authentication	File
Choose		Admin>Authentication	to	display	the	content	of	the	Greenplum	Database	 pg_hba.conf 	file.

The	 pg_hba.conf 	file	contains	a	list	of	entries	that	specify	the	characteristics	of	database	connection	requests	and	authentication	methods.	When
Greenplum	Database	receives	a	connection	request	from	a	client,	it	compares	the	request	to	each	entry	in	the	 pg_hba.conf 	entry	in	turn	until	a	match	is
found.	The	request	is	authenticated	using	the	specified	authentication	method	and,	if	successful,	the	connection	is	accepted.

	Editing	the	Host-Based	Authentication	File
Command	Center	users	with	the	Admin	permission	can	edit	the	 pg_hba.conf 	file.	Note	that	any	changes	you	make	are	lost	if	you	move	to	another	screen
before	you	save	them.

To	change	an	existing	entry,	click	anywhere	on	the	entry.	Edit	the	fields	and	click		Save	to	save	your	changes,	or		Cancel	to	revert	changes.

To	move	an	entry	up	or	down	in	the	list,	click	on	the	 	symbol,	drag	the	line	to	the	desired	location,	and	release.

To	add	a	new	entry	to	the	end	of	the	file,	click		Add	New	Entry	at	the	bottom	of	the	screen.	Edit	the	fields	and	click		Save	to	save	your	changes,	or
	Cancel	to	abandon	the	new	entry.

To	add	a	new	entry	after	an	existing	entry,	highlight	the	existing	entry	and	click	 .	Edit	the	fields	and	click		Save	to	save	your	changes,	or		Cancel	to
abandon	the	new	entry.

To	copy	an	entry,	select	the	entry	and	click	 .	A	copy	of	the	selected	entry	is	added	below	the	selected	entry	and	displayed	for	editing.	Edit	the	fields
and	click		Save	to	save	your	changes,	or		Cancel	to	abandon	the	copy.

To	add	a	comment	to	the	file,	add	an	entry	by	clicking		Add	New	Entry	 	and	then	choose	 # 	from	the	 Type 	list.

To	toggle	an	entry	between	active	and	inactive,	select	the	line	and	click	the		active/inactive	toggle	control	to	the	right.	This	action	adds	or	removes	a
comment	character	(#)	at	the	beginning	of	the	entry.

To	remove	an	entry,	highlight	the	line	and	click	 .	The	entry	is	displayed	with	strikethrough	text.	You	can	restore	the	entry	by	highlighting	it	and
clicking		undelete.	The	entry	is	permanently	removed	when	you	click		Save	config	and	update	GPDB.

To	finish	editing,	click		Save	config	and	update	GPDB.	Then	click		Save	and	Update	to	save	your	changes	or	click		Cancel	to	return	with	your	edits
intact.

When	you	select		Save	and	Update,	the	 pg_hba.conf 	file	is	saved	and	refreshed	in	Greenplum	Database.	Note	that	existing	client	connections	are
unaffected.

	Loading	a	Previous	Version	of	the	Host-Based	Authentication	File
When	you	save	a	new	version	of	the	 pg_hba.conf 	file,	a	copy	is	saved	in	the	Greenplum	Database	 $MASTER_DATA_DIRECTORY/pg_hba_archive 	directory	as	
pg_hba.conf-<timestamp> .

To	view	an	archived	version	of	the	 pg_hba.conf 	file,	click		Load	versions…	and	click	the	timestamp	for	the	version	to	display.

To	revert	to	a	previous	version	of	the	file,	load	the	previous	version	and	then	click		Save	config	and	update	GPDB.	The	configuration	is	refreshed	in
Greenplum	Database	and	saved	as	a	new	version	in	the	archive	directory.

or	

©	Copyright	Pivotal	Software	Inc,	2013-2016 39 3.1.1

https://www.postgresql.org/docs/8.3/static/auth-pg-hba-conf.html

©	Copyright	Pivotal	Software	Inc,	2013-2016 40 3.1.1

	

Administering	Greenplum	Command	Center
System	administration	information	for	the	Greenplum	Command	Center.

	About	the	Command	Center	Installation

	Starting	and	Stopping	Greenplum	Command	Center

	Administering	Command	Center	Agents

	Administering	the	Command	Center	Database

	Administering	the	Web	Server

	Configuring	Greenplum	Command	Center

	Enabling	Multi-Cluster	Support

	Securing	a	Greenplum	Command	Center	Console	Instance

©	Copyright	Pivotal	Software	Inc,	2013-2016 41 3.1.1

	

Starting	and	Stopping	Greenplum	Command	Center
Greenplum	Command	Center	includes	the	command	center	console	and	the	command	center	agents.

	Starting	and	Stopping	Command	Center	Agents
Whenever	the	Greenplum	Database	server	configuration	parameter	 gp_enable_gpperfmon 	is	enabled	in	the	master	 postgresql.conf 	file,	the	Command	Center
agents	will	run	and	collect	data.	These	agents	are	automatically	stopped	and	started	together	with	the	Greenplum	Database	instance.

To	disable	the	Command	Center	data	collection	agents,	you	must	disable	the	 gp_enable_gpperfmon 	parameter,	and	restart	the	Greenplum	Database
instance.

	Starting	and	Stopping	Command	Center	Console
Use	the	following	 gpcmdr 	commands	to	start,	stop	and	restart	Greenplum	Command	Center	Console	instances:

$	gpcmdr	--start	["instance	name"]

$	gpcmdr	--stop	["instance	name"]

$	gpcmdr	--restart	["instance	name"]

If	you	do	not	specify	an	instance	name,	all	instances	are	started,	stopped,	or	restarted	at	once.	You	can	check	the	status	of	instances	using:

$	gpcmdr	--status	["instance	name"]

©	Copyright	Pivotal	Software	Inc,	2013-2016 42 3.1.1

	

Administering	Command	Center	Agents
This	topic	describes	basic	agent	administration	tasks,	including	adding	hosts	and	viewing	agent	log	files.

	Adding	and	Removing	Hosts
Segment	agents	on	new	hosts	are	detected	automatically	by	the	master	agent.	Whenever	 gp_enable_gpperfmon 	is	enabled	on	the	master,	the	master
monitor	agent	automatically	detects,	starts,	and	begins	harvesting	data	from	new	segment	agents.

To	verify	the	addition	of	a	new	monitored	host,	you	can	check	for	the	new	hostname	in	the	Greenplum	Command	Center	Console	System	Metrics	view.
Alternately,	you	can	query	the	 system_now 	table	for	the	row	containing	current	metrics	for	each	host.	For	example:

#	SELECT	*	FROM	system_now	WHERE	hostname='new_hostname';

	Viewing	and	Maintaining	Master	Agent	Log	Files
Log	messages	for	the	master	agent	are	written	to	the	following	file	by	default:

	$MASTER_DATA_DIRECTORY/gpperfmon/logs/gpmmon.log

To	change	the	log	file	location,	edit	the	 log_location 	parameter	in	 gpperfmon.conf .

On	the	segment	hosts,	agent	log	messages	are	written	to	a	 gpsmon.log 	file	in	the	segment	instance’s	data	directory.	For	a	host	with	multiple	segments,	the
agent	log	file	is	located	in	the	data	directory	of	the	first	segment,	as	listed	in	the	 gp_configuration 	table	by	dbid.	If	the	segment	agent	is	unable	to	log	into
this	directory,	it	will	log	messages	to	the	home	directory	of	the	user	running	Command	Center	(typically	 gpadmin).

	Configuring	Log	File	Rollover
At	higher	logging	levels,	the	size	of	the	log	files	may	grow	dramatically.	To	prevent	the	log	files	from	growing	to	excessive	size,	you	can	add	an	optional	log
rollover	parameter	to	 gpperfmon.conf .	The	value	of	this	parameter	is	measured	in	bytes.	For	example:

max_log_size	=	10485760

With	this	setting,	the	log	files	will	grow	to	10MB	before	the	system	rolls	over	the	log	file.	The	timestamp	is	added	to	the	log	file	name	when	it	is	rolled	over.
Administrators	must	periodically	clean	out	old	log	files	that	are	no	longer	needed.

©	Copyright	Pivotal	Software	Inc,	2013-2016 43 3.1.1

	

Administering	the	Command	Center	Database
Data	collected	by	Command	Center	agents	is	stored	in	a	dedicated	database	called	gpperfmon	within	the	Greenplum	Database	instance.	This	database
requires	the	typical	database	maintenance	tasks,	such	as	clean	up	of	old	historical	data	and	periodic	 ANALYZE .

See	the		Command	Center	Database	Reference	section	for	a	reference	of	the	tables	and	views	in	the	gpperfmon	database.

	Connecting	to	the	Command	Center	Database
Database	administrators	can	connect	directly	to	the	Command	Center	database	(gpperfmon)	using	any	Greenplum	Database-compatible	client	program
(such	as	 psql).	For	example:

$	psql	-d	gpperfmon	-h	master_host	-p	5432	-U	gpadmin

	Backing	Up	and	Restoring	the	Command	Center	Database
The	history	tables	of	the	Command	Center	database	(gpperfmon)	can	be	backed	up	and	restored	using	the	Greenplum	Database	parallel	backup	and
restore	utilities	(gpcrondump ,	 gpdbrestore).	See	the	Greenplum	Database	Utility	Guide	for	more	information.

Because	the	Command	Center	database	has	a	low	number	of	tables,	you	may	prefer	to	devise	a	backup	plan	using	the	table-level	backup	features	of	
gp_dump .	For	example,	you	can	create	scripts	to	run	 gp_dump 	to	back	up	the	monthly	partitions	of	the	historical	data	tables	on	a	monthly	schedule.
Alternately,	you	can	back	up	your	Command	Center	database	at	the	database	level.

	Maintaining	the	Historical	Data	Tables
All	of	the	 *_history 	tables	stored	in	the	Command	Center	database	(gpperfmon)	are	partitioned	into	monthly	partitions.	A	January	2010	partition	is
created	at	installation	time	as	a	template	partition	(it	can	be	deleted	once	some	current	partitions	are	created).	The	Command	Center	agents
automatically	create	new	partitions	in	two	month	increments	as	needed.	Administrators	must	periodically	drop	partitions	for	the	months	that	are	no
longer	needed	in	order	to	maintain	the	size	of	the	Command	Center	database.

See	the	Greenplum	Database	Administrator	Guide	for	more	information	on	dropping	partitions	of	a	partitioned	table.

©	Copyright	Pivotal	Software	Inc,	2013-2016 44 3.1.1

	

Administering	the	Web	Server
The	gpmonws	web	server	is	installed	in	the	 www 	directory	of	your	Greenplum	Command	Center	installation.

	Configuring	the	Web	Server
The	web	server	configuration	file	is	stored	in	 $GPPERFMONHOME/instances/instance_name/webserver/conf/app.conf .	Some	of	the	parameters	in	this	configuration
file	are	set	by	the	 gpcmdr 	setup	utility,	including	the	web	server	port	and	SSL	options.	See	the	Web	Server	Parameters	section	of		Configuration	File
Reference	for	a	description	of	the	parameters	in	this	file.

	Viewing	and	Maintaining	Web	Server	Log	Files
Web	server	access	and	error	log	messages	are	written	to	 $GPPERFMONHOME/instances/<instance_name>/webserver/logs/gpmonws.log .

If	you	experience	errors	viewing	the	Greenplum	Command	Center	Console,	refer	to	this	file	for	more	information.

To	prevent	the	web	server	log	from	growing	to	excessive	size,	you	can	set	up	log	file	rotation	using	 logrotate 	or	 cronolog .

©	Copyright	Pivotal	Software	Inc,	2013-2016 45 3.1.1

	

Configuring	Greenplum	Command	Center
Configuration	parameters	for	Greenplum	Command	Center	are	stored	in	the	Agent	and	Console	configuration	files.

	Agent	Configuration
Changes	to	these	files	require	a	restart	of	the	Greenplum	Database	instance	(gpstop	-

r
).

$MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf

$MASTER_DATA_DIRECTORY/postgresql.conf

	Console	Configuration
Changes	to	these	files	require	a	restart	of	Command	Center	Console	(gpcmdr	--restart).

$GPPERFMONHOME/instances/<instance_name>/conf/clusters.conf

$GPPERFMONHOME/instances/<instance_name>/webserver/conf/app.conf

See	the		Configuration	File	Reference	section	for	a	description	of	the	configuration	parameters	in	these	files.

You	should	not	need	to	manually	edit	any	of	the	files.	Running	the	Command	Center	setup	utility	will	make	all	the	necessary	modifications	to	these
configuration	files.

©	Copyright	Pivotal	Software	Inc,	2013-2016 46 3.1.1

	

Enabling	Multi-Cluster	Support
Multi-cluster	functionality	allows	you	to	view	the	status	of	multiple	Greenplum	Database	clusters	at	one	time	in	the	Command	Center	user	interface.	The
clusters	can	be	organized	into	groups.

Typically,	one	Greenplum	cluster	is	designated	the	master	cluster;	its	Command	Center	instance	hosts	the	multi-cluster	view	for	all	Command	Center-
managed	clusters.

See		Monitoring	Multiple	Greenplum	Database	Clusters	for	information	about	accessing	the	multi-cluster	view.

Setting	Up	Multiple	Clusters
Multi-cluster	support	is	enabled	with	a	multi-cluster	configuration	file.	There	is	a	template	for	this	configuration	file	in	the	instance	directory	of	each
Command	Center	instance	at	the	following	location:

$GPCCHOME/instances/<instance_name>/conf/clusters.conf

Locate	the	 clusters.conf 	template	on	the	Command	Center	instance	you	want	to	identify	as	the	master	instance.	This	will	be	the	web	server	that	hosts	the
multi-cluster	web	page.

The	configuration	file	consists	of	the	following	values	separated	by	colons:

SERVER	:	HOST	:	PORT	:	TABGROUP	:	AUTOLOGIN	:	SSL	:	ACCESS

For	example:

Miracle:www.example.com:28080:Production:True:false:gpdb_role,accounting_role
Deforest:192.51.100.186:28080:Development:False:false
Grandalpha:grandalpha:32020:Development:False:false

All	fields	except	the	last,		ACCESS,	are	required.

SERVER
The	server	value	is	a	primary	key,	used	to	uniquely	identify	each	Greenplum	Database	cluster.

The	name	may	not	contain	special	characters,	other	than	the	space	character,	underscore	(_),	or	hyphen	(-).

Command	Center	throws	an	error	if	there	are	any	entries	with	the	same	primary	key.

HOST
This	is	the	host	name	or	IP	address	for	the	cluster’s	Command	Center	UI.

PORT
The	Command	Center	port	number.

TABGROUP
This	field	is	used	to	divide	Greenplum	Database	clusters	into	categories;	for	example,		Testing,		Production,	and		Deployment.

AUTOLOGIN
This	field	enables	automatic	login	to	the	cluster	from	the	multi-cluster	view.	When	automatic	login	is	enabled,	clicking	the	cluster’s	health	chart	on
the	multi-cluster	page	loads	the	cluster’s	Command	Center	UI	in	a	new	browser	window.

The		AUTOLOGIN	field	is	a	true	or	false	value.	It	is	not	case-sensitive.

SSL
This	field	indicates	whether	SSL	is	enabled	for	the	host.	It	takes	a	true	or	false	value	and	is	not	case-sensitive.	Any	other	value	is	an	error,	which	will
be	shown	in	the	UI.

	Important:	All	hosts	must	have	the	same	SSL	configuration.	SSL	must	be	enabled	or	disabled	for	all	hosts.

ACCESS
This	optional	field	contains	a	comma-separated	list	of	database	roles	that	can	see	the		Multiple	GPDB	Clusters	view.	If	this	field	is	empty,	all	users
can	see	the	view.

©	Copyright	Pivotal	Software	Inc,	2013-2016 47 3.1.1

©	Copyright	Pivotal	Software	Inc,	2013-2016 48 3.1.1

	

Securing	a	Greenplum	Command	Center	Console	Instance
A	Greenplum	Command	Center	Console	instance	can	be	secured	by	encrypting	network	traffic	between	the	web	server	and	users’	browsers,
authenticating	Command	Center	users,	and	managing	users’	permissions	to	access	Command	Center	features.

	SSL/TLS	Encryption
Greenplum	Command	Center	supports	SSL/TLS	encryption	to	secure	connections	between	browsers	and	the	Command	Center	web	server.	To	enable
SSL,	you	should	have	a	signed	certificate	for	the	Command	Center	web	server	in	place	when	you	create	the	Command	Center	instance.

Place	your	certificate	on	the	server	where	Command	Center	is	installed,	for	example	in	the	 /etc/ssl/certs 	directory	of	the	Greenplum	master	host.	You
import	the	certificate	when	you	create	a	Command	Center	instance	with	the	 gpcmdr	--

setup
	command.	The	locations	of	the	certificate	and	private	key	files

are	saved	in	the	 $GPPERFMONHOME/instances/<instance_name>/webserver/conf/app.conf 	configuration	file	for	the	command	center	instance.	See		Command	Center
Console	Parameters	for	details.

You	can	request	a	certificate	from	your	organization’s	internal	certificate	authority	or	a	commercial	certificate	authority,	or	you	can	use	a	self-signed
certificate	you	create	yourself	with	a	cryptography	suite	such	as	OpenSSL.	If	you	create	a	self-signed	certificate,	note	that	clients	will	have	to	override	a
security	warning	when	they	first	connect	to	the	Command	Center	web	server.

	Authentication	Options
Users	logging	in	to	Greenplum	Command	Center	are	authenticated	with	the	Greenplum	Database	host-based	authentication	system.	Users	can	enter
credentials	as	a	user	name	and	password	or,	if	Kerberos	authentication	is	configured,	by	authenticating	with	Kerberos	on	their	workstation	before
browsing	to	the	Command	Center	web	server.

Database	users	must	first	be	added	to	the	Greenplum	Database	by	using	commands	such	as	 CREATE	ROLE 	or	 CREATE	USER .	The	 LOGIN 	privilege	is
required.	This	example	creates	a	login	user	with	an	encrypted	password:

CREATE	ROLE	cc_user	WITH	LOGIN	ENCRYPTED	PASSWORD	'changeme';

The	 pg_hba.conf 	configuration	file	determines	how	authentication	will	proceed.	This	file	contains	a	list	of	entries	that	are	compared	to	attributes	of	the
user’s	connection	request,	including	the	type	of	connection,	network	location	of	the	originating	host,	database	name,	and	login	user	name.	When	a
match	is	found,	the	authentication	method	specified	in	the	entry	is	applied.

The	 pg_hba.conf 	file	can	be	viewed	by	Operators	and	edited	by	Admins	in	the	Command	Center	console	on	the		Admin>Authentication	page.

Users	configured	with	local	 trust 	authentication	are	denied	access	to	Command	Center	because	this	method	is	not	secure.	Using	remote	 trust
authentication	is	discouraged	for	the	same	reason.

The	 md5 	and	 password 	authentication	methods	authenticate	the	user	name	and	password	with	the	Greenplum	Database	 pg_roles 	system	table.	The	
md5 	method	requires	the	password	to	be	MD5-encoded	when	sent	over	the	network,	so	it	is	preferred	over	the	 password 	method,	which	sends	the
password	in	clear	text.

The	 ldap 	authentication	method	authenticates	the	user	name	and	password	with	an	LDAP	server.	The	LDAP	server	and	parameters	are	specified	in	the
options	field	of	the	 pg_hba.conf 	entry.	See	the	PostgreSQL		LDAP	authentication 	documentation	for	the	format	of	the	LDAP	options.

The	 gss 	authentication	method	is	used	for	Kerberos	authentication.	To	use	Kerberos	with	Command	Center,	Kerberos	authentication	must	be	enabled
for	the	Greenplum	Database	system	and	the	Command	Center	instance	must	also	be	configured.	Users	authenticate	with	the	Kerberos	KDC	on	their
workstations	(using	 kinit ,	for	example)	before	connecting	to	the	Command	Center	web	server.	The	role	name	in	Command	Center	is	the	user’s	Kerberos
principal	name.

For	details	about	setting	up	Kerberos	authentication,	see		Enabling	Kerberos	Authentication	with	Greenplum	Command	Center.

See	the	PostgreSQL		Authentication	methods 	documentation	for	additional	details	of	the	authentication	options.

	Authorization
Command	Center	manages	permission	levels	using	Greenplum	Database	roles	and	groups.	The	Basic,	Operator	Basic,	and	Operator	permission	levels

©	Copyright	Pivotal	Software	Inc,	2013-2016 49 3.1.1

https://www.postgresql.org/docs/8.3/static/auth-methods.html
https://www.postgresql.org/docs/8.3/static/auth-methods.html#AUTH-PASSWORD

correspond	to	the	 gpcc_basic ,	 gpcc_operator_basic ,	and	 gpcc_operator 	group	roles	in	the	database.	The	Admin	permission	level	is	conferred	to	roles	that
have	the	 SUPERUSER 	privilege.	A	user	who	has	not	been	added	to	any	of	the	groups	and	does	not	have	 SUPERUSER 	privilege	has	the	most	restrictive
permission	level,	Self	Only.

Greenplum	Database	superusers	can	manage	permission	levels	on	the	Command	Center		Admin>Permissions	page.	Superusers	can	also	directly	assign
users	roles	in	the	database	by	using	the	 ALTER	USER ,	 ALTER	GROUP ,	and	related	commands	to	add	or	remove	users	from	groups	and	add	or	remove
the	 SUPERUSER 	privilege.	If	a	role	is	configured	for	more	than	one	permission	level,	Command	Center	uses	the	highest	permission	level.

Command	Center	users	have	the	following	capabilities,	according	to	their	permission	levels:

Self	Only
Users	can	view	metrics	and	view	and	cancel	their	own	queries.

Any	Greenplum	Database	user	successfully	authenticated	through	the	Greenplum	Database	authentication	system	can	access	Greenplum
Command	Center	with	Self	Only	permission.	Higher	permission	levels	are	required	to	view	and	cancel	other’s	queries	and	to	access	the	System	and
Admin	Control	Center	screens.

Basic
Allows	users	to	view	metrics,	view	all	queries,	and	cancel	their	own	queries.

Users	with	Basic	permission	are	members	of	the	Greenplum	Database	 gpcc_basic 	group.

Operator	Basic
Allows	users	to	view	metrics,	view	their	own	and	others’	queries,	cancel	their	own	queries,	and	view	the	System	and	Admin	screens.

Users	with	Operator	Read-only	permission	are	members	of	the	Greenplum	Database	 gpcc_operator_basic 	group.

Operator
Allows	users	to	view	their	own	and	others’	queries,	cancel	their	own	and	other’s	queries,	and	view	the	System	and	Admin	screens.

Users	with	Operator	permission	are	members	of	the	Greenplum	Database	 gpcc_operator 	group.

Admin
Allows	users	access	to	all	views	and	capabilities	in	the	Command	Center.

Greenplum	Database	users	with	the	 SUPERUSER 	privilege	in	Greenplum	Database	have	Superuser	permissions	in	Command	Center.

©	Copyright	Pivotal	Software	Inc,	2013-2016 50 3.1.1

	

Configuring	Authentication	for	the	Command	Center	Console
Greenplum	Command	Center	users	are	Greenplum	Database	users,	authenticated	using	the	standard	Greenplum	Database	host-based	authentication
system.	When	authentication	is	properly	configured,	a	user	can	use	the	same	credentials	to	log	into	a	database	with	a	database	client	such	as	 psql 	and
into	the	Command	Center	web	interface	with	a	browser.

To	create	a	new	Command	Center	user,	first	you	have	to	create	a	Greenplum	Database	user,	then	edit	the	Greenplum	host-based	authentication
configuration	file	(pg_hba.conf)	to	give	that	user	access	to	Command	Center.

Any	Greenplum	Database	user	who	can	authenticate	via	the	 pg_hba.conf 	file	can	log	in	to	Greenplum	Command	Center	and	view	or	cancel	their	own
queries	and	view	metrics	screens.	A	user’s	Command	Center	permission	level	determines	if	additional	Command	Center	features	are	accessible.	See
	Authorization	for	information	about	permissions.

The	following	are	steps	to	create	new	Command	Center	users	in	an	interactive	 psql 	session.	With	the	exception	of	the	 CREATE	ROLE 	command	to	create
a	new	database	user,	all	of	these	steps	can	be	performed	in	the	Command	Center	on	the		Admin>Permissions	or		Admin>Authorization	screens.

See	the	Greenplum	Database	Administrator	Guide	for	more	detailed	information	about	creating	database	users	and	roles.

1.	 Login	as	 gpadmin 	on	the	master	host.

2.	 Start	 psql :

$	psql

3.	 Enter	the	 CREATE	ROLE 	command	to	create	a	user:

#	CREATE	ROLE	cc_user	WITH	LOGIN	ENCRYPTED	PASSWORD	'changeme';

	To	create	an	Admin	user	-	a	role	with	superuser	privileges	in	the	database	and	Greenplum	Command	Center:

#	CREATE	ROLE	cc_admin	WITH	LOGIN	ENCRYPTED	PASSWORD	'changeme'	SUPERUSER	CREATEDB;

4.	 For	users	other	than	Admin,	set	the	permission	level	by	adding	the	user	to	a	Command	Center	group	role:
	To	create	a	Basic	user:	add	the	user	to	the	 gpcc_basic 	role:

#	GRANT	gpcc_basic	TO	cc_user;

	To	create	an	Operator	Basic	user	-	add	the	user	to	the	 gpcc_operator_basic 	role:

#	GRANT	gpcc_operator_basic	TO	cc_user;

	To	create	an	Operator	user	-	add	the	user	to	the	 gpcc_operator 	role:

#	GRANT	gpcc_operator	TO	cc_user;

5.	 Grant	permissions	to	a	group	by	granting	the	role	to	the	group:

#	CREATE	ROLE	cc_users;
#	GRANT	cc_users	to	cc_user;
#	GRANT	gpcc_operator	to	cc_users;

6.	 Verify	that	roles	were	created	successfully	using	the	following	command:

#	\du

The	new	users	you	created	are	returned	along	with	the	attributes	you	specified.

7.	 Edit	the	 pg_hba.conf 	file	to	give	new	users	access	to	databases	and	the	Command	Center.	Open	the	file	in	an	editor:

$	vi	$MASTER_DATA_DIRECTORY/pg_hba.conf

8.	 Scroll	to	the	bottom	of	the	file	and	insert	the	following	lines	to	give	the	new	users	access	from	any	IP	address	using	password	authentication:

©	Copyright	Pivotal	Software	Inc,	2013-2016 51 3.1.1

host					gpperfmon				cc_user				127.0.0.1/28					md5
host					gpperfmon				cc_admin			127.0.0.1/28					md5

List	additional	databases	the	users	can	access	after	 gpperfmon ,	or	replace	 gpperfmon 	with	 all 	to	allow	the	users	to	access	any	database.
	Note:	If	you	subsequently	have	issues	logging	in	to	Command	Center	it	may	be	due	to	your	specific	environment;	check	the
$GPPERFMON/instances/instance_name/logs/gpmonws.log 	log	file	for	authentication	errors.	Edit	the	 pg_hba.conf 	file	based	on	the	error	message	and	your
specific	environment.

9.	 Save	the	file	and	exit	the	editor.

10.	 Enter	the	following	command	to	reload	Greenplum	Database	processes.

#	gpstop	-u

©	Copyright	Pivotal	Software	Inc,	2013-2016 52 3.1.1

	

Enabling	Authentication	with	Kerberos
If	you	have	enabled	Kerberos	authentication	for	Greenplum	Database,	you	can	set	up	Greenplum	Command	Center	to	accept	connections	from	Kerberos-
authenticated	users.

Greenplum	Database	and	Command	Center	include	support	for	the	Generic	Security	Service	Applications	Program	Interface	(GSS-API)	standard.	A	related
standard,	Simple	and	Protected	GSS-API	Negotiation	Mechanism	(SPNEGO),	describes	the	protocol	GSS-API	clients	and	servers	use	to	agree	on	the
method	of	authentication.

With	a	SPNEGO-compliant	web	application	such	as	Command	Center,	the	client	and	server	agree	on	the	authentication	method	on	the	client’s	initial
HTTP	request.	If	Kerberos	authentication	is	not	supported	on	both	ends	of	the	connection	the	server	falls	back	to	basic	authentication,	and	displays	a
login	form	requesting	a	user	name	and	password.	If	a	user	has	authenticated	on	the	workstation	with	Kerberos	and	has	a	valid	ticket	granting	ticket,	the
web	browser	offers	the	user’s	credential	to	the	Command	Center	web	server.	A	Kerberos-enabled	Command	Center	web	server	is	configured	to	handle	the
authenticated	user’s	connection	request	in	one	of	three	modes,	called	strict,	normal,	or	gpmon-only.

Strict
Command	Center	has	a	Kerberos	keytab	file	containing	the	Command	Center	service	principal	and	a	principal	for	every	Command	Center	user.	If
the	principal	in	the	client’s	connection	request	is	in	the	keytab	file,	the	web	server	grants	the	client	access	and	the	web	server	connects	to
Greenplum	Database	using	the	client’s	principal	name.	If	the	client’s	principal	is	not	in	the	keytab	file,	the	server	falls	back	to	basic	authentication.

Normal
The	Command	Center	Kerberos	keytab	file	contains	the	Command	Center	principal	and	may	contain	principals	for	Command	Center	users.	If	the
principal	in	the	client’s	connection	request	is	in	Command	Center’s	keytab	file,	it	uses	the	client’s	principal	for	database	connections.	Otherwise,
Command	Center	uses	the	 gpmon 	user	for	database	connections.

gpmon-only
The	Command	Center	uses	the	 gpmon 	database	role	for	all	Greenplum	Database	connections.	No	client	principals	are	needed	in	the	Command
Center’s	keytab	file.

If	you	have	set	up	Kerberos	authentication	for	Greenplum	Database,	most	of	the	configuration	required	to	enable	Command	Center	Kerberos
authentication	has	been	done.	The	Command	Center	Kerberos	configuration	builds	upon	the	Greenplum	Database	Kerberos	setup.

Kerberos	authentication	can	be	enabled	by	responding	to	prompts	when	you	set	up	a	new	Command	Center	instance	with	the	 gpcmdr	--
setup

	command,	or

you	can	use	the	 gpcmdr	--krbenable	<instance-
name>

	command	to	enable	Kerberos	for	an	existing	Command	Center	instance.

	Before	You	Begin
Kerberos	authentication	must	be	enabled	for	Greenplum	Database.	See		Using	Kerberos	Authentication 	for	instructions.	Make	sure	the	following
prerequisites	are	met	before	you	continue:

The	 krb5-workstation 	package	and	associated	libraries	(libkrb5*)	must	be	installed	on	the	Greenplum	master	host	and	each	client	workstation.

The	date	and	time	on	the	Greenplum	master	host	and	all	client	workstations	must	be	synchronized	with	the	KDC.

The	 krb5.conf 	configuration	file	must	be	the	same	on	the	KDC	host,	the	Greenplum	master	host,	and	client	workstations.

The	KDC	database	must	have	a	service	principal	for	Greenplum	Database.	The	default	service	name	for	Greenplum	Database	is	
postgres/<master-host>@<realm> .	You	can	choose	a	service	name	other	than	 postgres ,	but	it	must	match	the	value	of	the	 krb_srvname
parameter	in	the	 $MASTER_DATA_DIRECTORY/postgresql.conf 	file.

A	keyfile	file	with	the	Greenplum	Database	principal	must	be	installed	on	the	Greenplum	master	host	and	identified	by	the	krb_server_keyfile
parameter	in	the	 $MASTER_DATA_DIRECTORY/postgresql.conf 	file.

Each	client	workstation	must	have	a	keytab	file	containing	their	Kerberos	principal,	 <username>@<realm> .

	Add	Command	Center	Principals	to	the	KDC	Database
Before	you	configure	a	Command	Center	instance	for	Kerberos	authentication,	you	must	create	the	required	Kerberos	principals.	All	of	the	principals	used
with	Command	Center	are	created	in	the	Greenplum	Database	Kerberos	realm.	Command	Center	users	use	the	same	Kerberos	principal	to	log	in	to
Command	Center	and	Greenplum	Database.

Command	Center	Service	Principal

©	Copyright	Pivotal	Software	Inc,	2013-2016 53 3.1.1

http://gpdb.docs.pivotal.io/latest/admin_guide/kerberos.html

A	service	principal	is	needed	for	the	Command	Center	web	server.	This	principal	has	the	format	 HTTP/<host>@<realm> .	For	example,	if	users	access
Command	Center	at	the	URL	 http://mdw.example.com:28080 ,	the	 <host> 	part	of	the	service	key	is	 mdw.example.com 	and	the	 <realm> 	part	is	the
Greenplum	Database	Kerberos	realm,	for	example	 GPDB-KRB.EXAMPLE.COM .

Note	that	Kerberos	authentication	only	works	if	Command	Center	users	enter	the	host	in	the	same	format	specified	in	the	Kerberos	service
principal.	If	the	principal	specifies	the	FQDN,	for	example,	using	the	host’s	IP	address	in	the	browser	URL	will	not	work;	the	web	server	will	fall	back
to	basic	authentication,	presenting	a	login	screen.

Greenplum	Database	gpmon	User

Command	Center	uses	the	 gpmon 	Greenplum	role	to	access	the	 gpperfmon 	database,	which	contains	data	presented	in	the	Command	Center	UI.

You	can	choose	to	authenticate	the	 gpmon 	user	with	Kerberos	or	with	basic	authentication.	To	use	Kerberos,	you	must	create	a	principal	for	the	
gpmon 	user.

If	you	choose	to	use	basic	authentication	you	do	not	need	a	Kerberos	principal	for	the	 gpmon 	user.	The	 gpmon 	user	will	authenticate	with
Greenplum	Database	using	the	password	saved	in	the	 ~gpadmin/.pgpass 	file	on	the	host	running	the	Command	Center	instance.	See		Changing	the
gpmon	Password	for	instructions	to	manage	the	 gpmon 	password.

Command	Center	Users

Add	Kerberos	principals	for	any	Command	Center	users	who	do	not	already	have	principals	in	the	KDC	for	Greenplum	Database.

Adding	Kerberos	Principals
To	add	the	required	principals,	perform	the	following	steps	as	root	on	the	KDC	server.

1.	 Start	 kadmin.local .

kadmin.local

2.	 Add	a	principal	for	the	Command	Center	web	service.	Be	sure	to	specify	the	 <gpcc-host> 	in	the	same	format	that	users	should	enter	the	host	in	their
browsers.

kadmin.local:	addprinc	HTTP/<gpcc-host>@<realm>

3.	 If	you	want	the	 gpmon 	database	user	to	use	Kerberos	authentication,	add	a	 gpmon 	principal.

kadmin.local:	addprinc	gpmon@<realm>

4.	 Add	principals	for	any	new	Command	Center	users.

kadmin.local:	addprinc	cc_user1@<realm>

Repeat	for	each	new	Command	Center	user.

5.	 Enter	 quit 	to	exit	 kadmin.local .

	Set	Up	Keytab	Files
After	you	have	created	all	of	the	Kerberos	principals	needed,	you	create	and	distribute	keytab	files.	Keytab	files	contain	Kerberos	principals	and	encrypted
keys	based	on	the	principals’	Kerberos	passwords.	Keytab	files	are	needed	for	Greenplum	Database,	the	Command	Center	instance,	and	each	Command
Center	and	Database	user.

The	Command	Center	instance	is	usually	installed	on	the	Greenplum	master	and,	when	this	is	true,	a	single	keyfile	file	can	be	shared	by	Greenplum
Database	and	the	Command	Center	instance.	Running	Command	Center	on	the	Greenplum	master	is	recommended,	since	it	confines	authentication	with
the	database	to	a	single	host.

If	you	install	the	Command	Center	instance	on	a	host	other	than	the	Greenplum	master,	you	will	need	to	create	a	separate	keyfile	file.

You	must	also	create	a	keyfile	file	for	each	Greenplum	Database	or	Command	Center	user	containing	just	the	user’s	principal.	This	keyfile	file	is	installed
on	the	user’s	workstation	to	enable	the	user	to	authenticate	to	Kerberos.

©	Copyright	Pivotal	Software	Inc,	2013-2016 54 3.1.1

	Command	Center	Instance	on	the	Greenplum	Master	Host
If	the	Greenplum	Command	Center	web	server	is	running	on	the	Greenplum	Database	master	host,	Command	Center	can	share	the	Greenplum	Database
keyfile	file.	You	need	to	create	a	keyfile	file	that	contains	the	following	principals:

Service	key	for	the	 postgres 	process	on	the	Greenplum	Database	master	host,	for	example	 postgres/mdw.example.com@GPDB.EXAMPLE.COM .

Service	key	created	for	Command	Center	in	the	previous	section,	for	example	 HTTP/mdw.example.com@GPDB.EXAMPLE.COM.

A	principal	for	every	Kerberos-authenticated	Greenplum	Database	or	Command	Center	user.

All	service	keys	and	principals	should	be	in	the	Greenplum	Database	realm.

To	create	a	keytab	file	for	Greenplum	Database	and	Command	Center,	perform	perform	the	following	steps	as	root	on	the	KDC	server.

1.	 Start	 kadmin.local .

kadmin.local

2.	 Create	a	keytab	file	and	add	the	Greeplum	Database	service	key,	the	command	center	service	key,	and	all	database	and	Command	Center	users.

kadmin.local:	ktadd	-k	gpdb-kerberos.keytab	postgres/mdw.example.com@GPDB.EXAMPLE.COM	HTTP/mdw.example.com@GPDB.EXAMPLE.COM

You	can	enter	one	or	more	principals	with	each	 ktadd 	command.	You	can	specify	a	wildcard	using	the	 -glob 	option.	For	example	this	command
adds	all	principals	in	the	 GPDB.EXAMPLE.COM 	realm,	including	service	principals	and	admin	users.

	kadmin.local:	ktadd	-k	gpdb-kerberos.keytab	-glob	*@GPDB.EXAMPLE.COM		

3.	 Enter	 quit 	to	exit	 kadmin.local .

4.	 Copy	the	keyfile	you	created	to	the	Greenplum	Database	master	host,	replacing	the	old	keytab	file.	The	location	of	the	file	is	given	by	the
krb_server_keyfile 	parameter	in	the	 $MASTER_DATA_FILE/postgresql.conf 	file.	Set	the	permissions	on	the	file	so	that	it	can	be	read	only	by	the	 gpadmin

user.

5.	 Update	any	entries	required	for	new	Greenplum	Database	principals	in	the	 pg_hba.conf 	file	and	 pg_ident.conf 	files.	See		Update	the	Greenplum
Database	pg_hba.conf	File	for	details.

	Command	Center	Instance	on	a	Separate	Host
If	the	Command	Center	web	server	is	on	a	different	host	than	the	Greenplum	Database	master,	you	need	separate	keytab	files	for	Greenplum	Database
and	Command	Center.	The	keytab	file	for	Greenplum	Database	may	not	require	any	updates,	but	you	will	need	to	create	a	keytab	file	for	Command
Center.

The	Greenplum	Database	keytab	file	must	contain	the	Greenplum	Database	service	key	and	all	principals	for	users	with	database	access.

The	Command	Center	keytab	file	contains	the	Command	Center	service	key	and	principals	for	users	that	have	Command	Center	access.	Users	with
Command	Center	access	must	also	have	Greenplum	Database	access,	so	user	principals	in	the	Command	Center	keytab	file	must	also	be	in	the
Greenplum	Database	keytab	file.

Update	the	Greenplum	Database	keyfile	if	you	created	new	database	roles	and	principals	for	Command	Center.	For	example,	if	you	want	to	use	Kerberos
authentication	for	the	 gpmon 	user,	you	must	create	a	principal	and	add	it	to	both	the	Greenplum	Database	and	Command	Center	keytab	files.

To	create	the	keytab	file	for	Command	Center,	perform	the	following	steps	as	root	on	the	KDC	host.

1.	 Start	 kadmin.local .

kadmin.local

2.	 Create	a	keytab	file	and	add	the	Command	Center	service	key.

kadmin.local:	ktadd	-k	gpcc-kerberos.keytab	HTTP/mdw.example.com@GPDB.EXAMPLE.COM

3.	 If	you	want	to	authenticate	the	 gpmon 	user	with	Kerberos,	add	the	 gpmon 	principal.

kadmin.local:	ktadd	-k	gpcc-kerberos.keytab	gpmon@GPDB.EXAMPLE.COM

©	Copyright	Pivotal	Software	Inc,	2013-2016 55 3.1.1

4.	 Add	principals	for	all	Command	Center	users:

kadmin.local:	ktadd	-k	gpcc-kerberos.keytab	cc_user1@GPDB.EXAMPLE.COM	cc_user2@GPDB.EXAMPLE.COM

You	can	enter	one	or	more	principals	with	each	 ktadd 	command.

5.	 Enter	 quit 	to	exit	 kadmin.local .

6.	 Copy	the	keyfile	you	created	to	the	the	host	running	Command	Center,	for	example:

$	scp	gpcc-kerberos.keytab	gpadmin@<host-name>:/home/gpadmin

7.	 Update	any	entries	required	for	new	principals	in	the	 pg_hba.conf 	file	and	 pg_ident.conf 	files	on	the	Greenplum	master.	See		Update	the	Greenplum
Database	pg_hba.conf	File.

	Update	the	Greenplum	Database	pg_hba.conf	File
The	Greenplum	Database	 $MASTER_DATA_DIRECTORY/pg_hba.conf 	configuration	file	determines	which	authentication	methods	to	use	to	allow	database
access.

If	you	created	new	Command	Center	users,	you	may	need	to	add	an	entry	to	allow	access	via	Command	Center.	The	entry	for	an	individual	user	has	this
format:

host	database	<user-name>	<gpcc	CIDR>	gss	[options]

Authentication	for	the	 gpmon 	user	needs	to	be	set	up	in	the	 pg_hba.conf 	file	in	one	of	the	following	ways.

Basic	authentication

The	 /home/gpadmin/.gpass 	file	contains	the	password	for	 gpmon 	to	use.	See		Changing	the	gpmon	Password	for	details.	An	entry	in	the	 pg_hba.conf 	file
specifies	the	md5	authentication	method	for	 gpmon :

local	all	gpmon	md5

Trust	authentication

On	the	Greenplum	Database	host	only,	the	 gpmon 	user	can	access	databases	without	authentication:

local	all	gpmon	trust

The	 /home/gpadmin/.pgpass 	file	is	not	needed.

Kerberos	authentication

A	Kerberos	principal	has	been	created	for	the	 gpmon 	user	and	added	to	the	Greenplum	Database	and	Command	Center	keytab	files.

host	all	gpmon	<gpcc	CIDR>]	gss	[options]

Remove	any	existing	reject	rules	for	 gpmon :

host	all	gpmon	<auth-method>	reject

See		Using	Kerberos	Authentication 	for	more	information	about	the	 pg_hba.conf 	file.

	Enable	Kerberos	for	the	Command	Center	Instance
Set	up	the	Command	Center	instance	to	use	the	Command	Center	keytab	file	you	created.

©	Copyright	Pivotal	Software	Inc,	2013-2016 56 3.1.1

http://gpdb.docs.pivotal.io/latest/admin_guide/kerberos.html

If	you	are	creating	a	new	Command	Center	instance	with	the	 gpcmdr	--
setup

	command,	answer	 Y 	to	the	prompt	 Enable	kerberos	login	for	this
intance?

,	and

enter	the	Command	Center	host	name	and	path	to	the	keytab	file	at	the	prompts.	See		Create	the	Greenplum	Command	Center	Instance 	for	complete
instructions.

If	you	are	adding	Kerberos	authentication	to	an	existing	Command	Center	instance,	use	the	 gpcmdr	--krbenable	<instance-
name>

	command.	For	example,	if

your	Command	Center	instance	is	named	 my-gpcc 	enter	this	command:

$	gpcmdr	--krbenable	my-gpcc

Enter	the	Command	Center	host	name	and	path	to	the	keytab	file	at	the	prompts.	See	the		gpcmdr	Reference	for	more	information.

	Authenticating	With	Kerberos	on	the	Client	Workstation
To	use	Kerberos	Command	Center	authentication,	the	user	must	have	authenticated	with	Kerberos	using	the	 kinit 	command-line	tool.

The	user	then	accesses	the	Command	Center	web	server	with	a	URL	containing	the	host	name	in	the	format	specified	in	the	Command	Center	service
principal	and	the	port	number,	for	example	 http://gpcc.example.com:28080 .

The	web	browser	must	be	configured	to	use	the	SPNEGO	protocol	so	that	it	offers	the	user’s	Kerberos	principal	to	the	web	browser.	The	method	for
configuring	web	browsers	varies	with	different	browsers	and	operating	systems.	Search	online	to	find	instructions	to	set	up	your	browser	and	OS.

©	Copyright	Pivotal	Software	Inc,	2013-2016 57 3.1.1

http://docs-gpcc-staging.cfapps.io/310/gpcc/topics/setup-install-gpcc.html#topic_sht_15z_xp__task_h5s_trz_xp

	

Securing	the	gpmon	Database	User
The	Greenplum	Database	 gpmon 	user	is	a	superuser	role	used	to	manage	the	 gpperfmon 	database.	The	 gpperfmon_install 	utility,	which	must	be	run	once
before	you	can	create	a	Command	Center	Console	instance,	creates	the	 gpmon 	role.

Greenplum	Database	uses	the	 gpmon 	role	to	update	the	 gpperfmon 	database	with	data	collected	by	agents	running	on	the	segment	hosts.	The	Command
Center	web	server	uses	the	 gpmon 	role	to	connect	to	the	 gpperfmon 	database	as	well	as	databases	monitored	by	the	Command	Center	instance.

When	 gppermon_install 	creates	the	 gpmon 	role,	it	prompts	for	a	password,	which	it	then	adds	to	the	 .pgpass 	file	in	the	 gpadmin 	user’s	home	directory.	The
entry	in	the	 .pgpass 	file	is	similar	to	the	following:

*:5432:gpperfmon:gpmon:changeme

See		The	Password	File 	in	the	PostgreSQL	documentation	for	details	about	the	 .pgpass 	file.

In	the	 $MASTER_DATA_DIRECTORY/pg_hba.conf 	authentication	file,	 gpperfmon_install 	creates	two	entries:

local				gpperfmon									gpmon									md5
host					all									gpmon									127.0.0.1/28				md5

If	you	authenticate	users	with	Kerberos,	you	can	also	set	up	Kerberos	authentication	for	the	 gpmon 	role	on	the	Greenplum	master	and	standby	hosts.
Kerberos	authentication	is	supported	with	TCP	connections	only;	 local 	entries	use	Linux	sockets	and	authenticate	with	the	 .pgpass 	file	password,	even	if
you	have	enabled	Kerberos	for	 host 	entries.

	Changing	the	gpmon	Password
To	change	the	 gpmon 	password,	follow	these	steps:

1.	 Log	in	to	Greenplum	Database	as	a	superuser	and	change	the	 gpmon 	password	with	the	 ALTER	ROLE 	command:

#	ALTER	ROLE	gpmon	WITH	ENCRYPTED	PASSWORD	'new_password';

2.	 Update	the	password	in	the	 .pgpass 	file	in	the	 gpadmin 	home	directory	(~/.pgpass).	Replace	the	existing	password	in	the	line	or	lines	for	 gpmon 	with
the	new	password.

*:5432:gpperfmon:gpmon:new_password

3.	 Ensure	that	the	 .pgpass 	file	is	owned	by	 gpadmin 	and	RW-accessible	by	 gpadmin 	only.

$	chown	gpadmin:gpadmin	~/.pgpass
$	chmod	600	~/.pgpass

4.	 Restart	Greenplum	Command	Center	with	the	 gpcmdr 	utility.

$	gpcmdr	--restart

	Authenticating	gpmon	with	Kerberos
If	you	authenticate	Greenplum	Database	and	Command	Center	users	with	Kerberos,	you	can	also	authenticate	the	 gpmon 	user	with	Kerberos.

1.	 On	the	KDC,	create	a	keytab	file	containing	the	Kerberos	principal	for	the	 gpmon 	user,	just	as	you	would	for	any	Kerberos-authenticated	client.
Install	the	file	on	the	Greenplum	master	and	standby	hosts.

2.	 Update	the	entries	for	 gpmon 	in	the	 $MASTER_DATA_DIRECTORY/pg_hba.conf 	file	to	use	the	 gss 	authentication	method.

			host	all	gpmon	0.0.0.0/0	gss	include_realm=0	krb_realm=GPDB.EXAMPLE.COM

Note	that	 local 	entries	in	 pg_hba.conf 	cannot	be	authenticated	with	Kerberos.	If	there	is	a	 local 	entry	for	the	 gpmon 	user,	it	will	use	the	 .pgpass 	file	to

©	Copyright	Pivotal	Software	Inc,	2013-2016 58 3.1.1

https://www.postgresql.org/docs/8.3/static/libpq-pgpass.html

authenticate	with	the	database.	See		The	pg_hba.conf	file 	in	the	PostgreSQL	documentation	for	complete	 pg_hba.conf 	file	documentation.

1.	 Log	in	to	the	master	host	as	 gpadmin 	and	authenticate	the	 gpmon 	user.

			$	kinit	gpmon

1.	 Create	the	Kerberos-enabled	Command	Center	Console	instance.	See		Creating	Greenplum	Command	Center	Console	Instances	for	steps	to	create
an	instance.

©	Copyright	Pivotal	Software	Inc,	2013-2016 59 3.1.1

https://www.postgresql.org/docs/8.3/static/auth-pg-hba-conf.html

	

Utility	Reference
Reference	information	for	the	two	Greenplum	Command	Center	utility	programs:	the	 gpperfmon_install 	utility	that	enables	the	data	collection	agents	and
the	 gpcmdr 	utility	that	sets	up	and	manages	the	web	application.

	gpperfmon_install

	gpcmdr

©	Copyright	Pivotal	Software	Inc,	2013-2016 60 3.1.1

	

gpperfmon_install
Installs	the	Command	Center	database	(gpperfmon)	and	optionally	enables	the	data	collection	agents.

gpperfmon_install			
			[--enable	--password	gpmon_password	--port	gpdb_port]	
			[--pgpass	path_to_file]
			[–verbose]

gpperfmon_install	--help	|	-h	|	-?

–enable

In	addition	to	creating	the	 gpperfmon 	database,	performs	the	additional
steps	required	to	enable	the	Command	Center	data	collection	agents.
When	 --enable 	is	specified	the	utility	will	also	create	and	configure	the
gpmon	superuser	account	and	set	the	Command	Center	server
configuration	parameters	in	the	 postgresql.conf 	files.

–password	gpmon_password
Required	if	 --enable 	is	specified.	Sets	the	password	of	the	gpmon
superuser

–port	gpdb_port
Required	if	 --enable 	is	specified.	Specifies	the	connection	port	of	the
Greenplum	Database	master.

–pgpass	path_to_file
Optional	if	 --enable 	is	specified.	If	the	password	file	is	not	in	the	default
location	of	 ~/.pgpass ,	specifies	the	location	of	the	password	file.

–verbose Sets	the	logging	level	to	verbose.

–help	|	-h	|	-? Displays	the	online	help.

Description
The	 gpperfmon_install 	utility	automates	the	steps	to	enable	the	Command	Center	data	collection	agents.	You	must	be	the	Greenplum	system	user	(gpadmin

)	to	run	this	utility.	If	using	the	 --enable 	option,	the	Greenplum	Database	instance	must	be	restarted	after	the	utility	completes.

When	run	without	any	options,	the	utility	will	just	create	the	Command	Center	database	(gpperfmon).	When	run	with	the	–enable	option,	the	utility	will
also	run	the	following	additional	tasks	necessary	to	enable	the	Command	Center	data	collection	agents:

1.	 Creates	the	 gpmon 	superuser	role	in	Greenplum	Database.	The	Command	Center	data	collection	agents	require	this	role	to	connect	to	the	database
and	write	their	data.	The	 gpmon 	superuser	role	uses	MD5-encrypted	password	authentication	by	default.	Use	the	–password	option	to	set	the	
gpmon 	superuser’s	password.	Use	the	 --port 	option	to	supply	the	port	of	the	Greenplum	Database	master	instance.

2.	 Updates	the	 $MASTER_DATA_DIRECTORY/pg_hba.conf 	file.	The	utility	adds	the	following	lines	to	the	host-based	authentication	file	(pg_hba.conf).	This
allows	the	 gpmon 	user	to	locally	connect	to	any	database	using	MD5-encrypted	password	authentication:

local				gpperfmon			gpmon																				md5
host					all									gpmon				127.0.0.1/28				md5

3.	 Updates	the	password	file	(.pgpass).	In	order	to	allow	the	data	collection	agents	to	connect	as	the	 gpmon 	role	without	a	password	prompt,	you
must	have	a	password	file	that	has	an	entry	for	the	 gpmon 	user.	The	utility	adds	the	following	entry	to	your	password	file	(if	the	file	does	not	exist,
the	utility	creates	it):

*:5432:gpperfmon:gpmon:gpmon_password

If	your	password	file	is	not	located	in	the	default	location	(~/.pgpass),	use	the	 --pgpass 	option	to	specify	the	file	location.

4.	 Sets	the	server	configuration	parameters	for	Command	Center.	The	following	parameters	must	be	enabled	in	order	for	the	data	collection	agents	to
begin	collecting	data.	The	utility	will	set	the	following	parameters	in	the	 postgresql.conf 	configuration	files:

gp_enable_gpperfmon=on 	(in	all	 postgresql.conf 	files)
gpperfmon_port=8888 	(in	all	 postgresql.conf 	files)
gp_external_enable_exec=on 	(in	the	master	 postgresql.conf 	file)

©	Copyright	Pivotal	Software	Inc,	2013-2016 61 3.1.1

Examples
Create	the	Command	Center	database	(gpperfmon)	only:

$	su	-	gpadmin
$	gpperfmon_install

Create	the	Command	Center	database	(gpperfmon),	create	the	 gpmon 	superuser,	and	enable	the	Command	Center	agents:

$	su	-	gpadmin
$	gpperfmon_install	--enable	--password	changeme	--port	5432
$	gpstop	-r

©	Copyright	Pivotal	Software	Inc,	2013-2016 62 3.1.1

	

gpcmdr
Configures	and	manages	instances	of	the	Command	Center	Console.

gpcmdr	[--ssh_full_path	<path>]	
							--setup	[[<section_header>]	--config_file	<path>]
					|	--start	[<instance_name>]
					|	--stop	[<instance_name>]
					|	--restart	[<instance_name>]
					|	--migrate	[<instance_name>]
					|	--remove	[<instance_name>]
					|	--status	[<instance_name>]

Type Description

--setup

Configures	console	components	on	the	installation	host.	With	this	option,	 gpcmdr 	prompts	for	values	to	configure	the
components	and	writes	the	values	to	 app.conf .	For	more	information	on	these	configuration	parameters,	see		Configuration	File
Reference.

--
config_file

Sets	the	path	to	a	configuration	file	to	use	to	set	up	new	Command	Center	instances.	This	option	must	be	used	with	the	 --setup
option.	See		Setup	Configuration	File	for	information	about	the	format	and	content	of	this	configuration	file.	If	section_header	is
supplied,	 gpcmdr 	only	sets	up	the	instance	defined	in	the	named	section	in	the	configuration	file.	Otherwise,	 gpcmdr 	sets	up	all
instances	in	the	configuration	file.

--start Starts	the	specified	instance	(or	all	instances	by	default)	and	its	associated	web	service.

--stop Stops	the	specified	instance	(or	all	instances	by	default)	and	its	associated	web	service.

--migrate Copies	Command	Center	instances	(or	all	instances	by	default)	from	a	previous	installation.

--remove Removes	the	specified	instance	and	its	associated	database	schema.

--restart Restarts	the	specified	instance	(or	all	instances	by	default)	and	its	associated	web	service.

--status Displays	the	status,	either	 Running 	or	 Stopped ,	of	the	web	service.

--version Displays	the	version	of	the	 gpcmdr 	utility.

--
ssh_full_path

Sets	the	full	path	to	the	ssh	command.	Use	this	to	override	the	ssh	command	found	on	the	path.

Description
The	 gpcmdr 	utility	sets	up	and	configures	Command	Center	Console	instances,	starts	and	stops	instances,	and	provides	status	information.

You	can	set	up	a	new	Command	Center	Console	instance	interactively	or,	by	providing	a	configuration	file,	non-interactively.

For	actions	 --start ,	 --stop ,	 --restart ,	 --migrate ,	and	 --status 	you	can	specify	a	console	instance	name.	If	you	do	not	specify	a	name,	the	action	applies	to	all
existing	console	instances.

On	the	 --start 	option,	 gpcmdr 	creates	the	 gpcc_basic ,	 gpcc_operator_basic ,	and	 gpcc_operator 	database	roles	if	they	do	not	already	exist.

The	 --migrate 	option	prompts	you	to	enter	the	path	to	the	Command	Center	installation	with	instances	you	want	to	migrate.	The	utility	checks	whether
the	instance	to	copy	already	exists	in	the	new	location	before	copying.	If	the	instance	exists	in	the	new	location,	a	prompt	asks	whether	you	want	to
overwrite	the	instance.

Examples
Interactively	create	a	new	Command	Center	Console	instance:

$	gpcmdr	--setup

Set	up	the	Command	Center	Console	instance	defined	in	the	 [development] 	section	of	a	configuration	file:

$	gpmcdr	--setup	development	gpccinstances.cfg

Check	the	status	of	all	Command	Center	Console	instances:

©	Copyright	Pivotal	Software	Inc,	2013-2016 63 3.1.1

$	gpcmdr	--status

©	Copyright	Pivotal	Software	Inc,	2013-2016 64 3.1.1

	

Configuration	File	Reference
References	for	Greenplum	Command	Center	configuration	files.

Configuration	parameters	for	Greenplum	Command	Center	are	stored	in	the	following	files:

$MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf

Stores	configuration	parameters	for	the	Greenplum	Command	Center	agents.
$GPPERFMONHOME/instances/<instance_name>/webserver/conf/app.conf

Stores	configuration	parameters	for	the	Command	Center	web	application	and	web	server.
$MASTER_DATA_DIRECTORY/postgresql.conf

Stores	configuration	parameters	to	enable	the	Greenplum	Command	Center	feature	for	Greenplum	Database	server.
$GPPERFMONHOME/bin/ssh-wrapper

Greenplum	Command	Center	normally	finds	the	 ssh 	command	on	the	path.	If	your	environment	has	an	incompatible	implementation	of	this
command	on	the	path,	you	can	provide	the	absolute	path	to	your	version	in	the	 ssh-wrapper 	script,	located	at	
$GPPERFMONHOME/bin/ssh-wrapper .

For	example:

ssh="/home/me/bin/myssh"

Any	system	user	with	write	permissions	to	these	directories	can	edit	these	configuration	files.

©	Copyright	Pivotal	Software	Inc,	2013-2016 65 3.1.1

	

Command	Center	Agent	Parameters
The	 $MASTER_DATA_DIRECTORY/gpperfmon/conf/gpperfmon.conf 	file	stores	configuration	parameters	for	the	Command	Center	agents.	For	configuration
changes	to	these	options	to	take	effect,	you	must	save	 gpperfmon.conf 	and	then	restart	Greenplum	Database	server	(gpstop	-

r
).

To	enable	the	Command	Center	agents	within	Greenplum	Database	server,	you	must	also	set	the	Greenplum	Database	Server	Configuration	Parameters,
see		Command	Center	Database	Reference	for	details.

log_location
Specifies	a	directory	location	for	Command	Center	log	files.	Default	is	 $MASTER_DATA_DIRECTORY/gpperfmon/logs .

min_query_time
Specifies	the	minimum	query	run	time	in	seconds	for	statistics	collection.	Command	Center	logs	all	queries	that	run	longer	than	this	value	in	the
queries_history	table.	For	queries	with	shorter	run	times,	no	historical	data	is	collected.	Defaults	to	20	seconds.

If	you	know	that	you	want	to	collect	data	for	all	queries,	you	can	set	this	parameter	to	a	low	value.	Setting	the	minimum	query	run	time	to	zero,
however,	collects	data	even	for	the	numerous	queries	run	by	Command	Center	itself,	creating	a	large	amount	of	data	that	may	not	be	useful.

min_detailed_query_time
Specifies	the	minimum	iterator	run	time	in	seconds	for	statistics	collection.	Command	Center	logs	all	iterators	that	run	longer	than	this	value	in	the
iterators_history	table.	For	iterators	with	shorter	run	times,	no	data	is	collected.	Minimum	value	is	10	seconds.

This	parameter’s	value	must	always	be	equal	to,	or	greater	than,	the	value	of	 min_query_time .	Setting	 min_detailed_query_time 	higher	than	
min_query_time 	allows	you	to	log	detailed	query	plan	iterator	data	only	for	especially	complex,	long-running	queries,	while	still	logging	basic	query
data	for	shorter	queries.

Given	the	complexity	and	size	of	iterator	data,	you	may	want	to	adjust	this	parameter	according	to	the	size	of	data	collected.	If	the	 iterators_* 	tables
are	growing	to	excessive	size	without	providing	useful	information,	you	can	raise	the	value	of	this	parameter	to	log	iterator	detail	for	fewer	queries.

max_log_size
This	parameter	is	not	included	in	gpperfmon.conf,	but	it	may	be	added	to	this	file	for	use	with	Greenplum	Command	Center.

To	prevent	the	log	files	from	growing	to	excessive	size,	you	can	add	the	 max_log_size 	parameter	to	 gpperfmon.conf .	The	value	of	this	parameter	is
measured	in	bytes.	For	example:

max_log_size	=	10485760	

With	this	setting,	the	log	files	will	grow	to	10MB	before	the	system	rolls	over	to	a	new	log	file.

partition_age
The	number	of	months	that	Greenplum	Command	Center	statistics	data	will	be	retained.	The	default	it	is	0,	which	means	we	won’t	drop	any	data.

quantum
Specifies	the	time	in	seconds	between	updates	from	Command	Center	agents	on	all	segments.	Valid	values	are	10,	15,	20,	30,	and	60.	Defaults	to	15
seconds.

If	you	prefer	a	less	granular	view	of	performance,	or	want	to	collect	and	analyze	minimal	amounts	of	data	for	system	metrics,	choose	a	higher
quantum.	To	collect	data	more	frequently,	choose	a	lower	value.

ignore_qexec_packet
When	set	to	true,	Greenplum	Command	Center	agents	do	not	collect	performance	data	in	the	 gpperfmon 	database	 queries_* 	tables:	
rows_out ,	 cpu_elapsed ,	 cpu_currpct ,	 skew_cpu ,	and	 skew_rows .	The	default	setting,	true,	reduces	the	amount	of	memory	consumed	by
the	gpmmon	process.	Set	this	parameter	to	false	if	you	require	this	additional	performance	data.

smdw_aliases
This	parameter	allows	you	to	specify	additional	host	names	for	the	standby	master.	For	example,	if	the	standby	master	has	two	NICs,	you	can	enter:

smdw_aliases=	smdw-1,smdw-2

This	optional	fault	tolerance	parameter	is	useful	if	the	Greenplum	Command	Center	loses	connectivity	with	the	standby	master.	Instead	of
continuously	retrying	to	connect	to	host	smdw,	it	will	try	to	connect	to	the	NIC-based	aliases	of	 smdw-1 	and/or	 smdw-2 .	This	ensures	that	the
Command	Center	Console	can	continuously	poll	and	monitor	the	standby	master.

©	Copyright	Pivotal	Software	Inc,	2013-2016 66 3.1.1

©	Copyright	Pivotal	Software	Inc,	2013-2016 67 3.1.1

	

Command	Center	Console	Parameters
Each	instance	of	the	Command	Center	Console	has	a	configuration	file	located	at	 $GPPERFMONHOME/instances/<instance_name>/webserver/conf/app.conf .

After	editing	this	file,	reload	the	configuration	by	restarting	the	Command	Center	Console	instance	(gpperfmon	--restart
<instance_name>

).

appname = gpmonws

The	web	server	binary	file.	Do	not	change.

listentcp4 = [true | false]

When	 true ,	the	address	type	is	tcp4.	The	default	is	 true .

runmode = [prod | dev | test]

The	application	mode,	which	can	be	 dev ,	 prod 	or	 test .	The	default	is	 dev .	In	 dev 	mode	Command	Center	shows	user	friendly	error	pages.
User	friendly	error	pages	are	not	rendered	in	 prod 	mode.

session = [true | false]

Use	sessions	to	manage	user	experience.	The	default	is	 true .	Sessions	are	stored	in	memory.

enablexsrf = [true | false]

Enable	CSRF	protection.

xsrfexpire = <seconds>

CSRF	expire	time.	The	default	is	 43200 	seconds.

xsrfkey = <token_string>

The	CSRF	token.

rendertype = json

The	render	type	of	web	server.	Do	not	change.

printallsqls = [true | false]

Print	all	backend	gpperfmon	SQL	to	the	web	server	console.	The	default	is	 false .

sessionname = webserver_gpperfmon_instance_<instance_name>

The	name	of	the	session	in	Greenplum	Database.	Do	not	change.

display_name = <display_name>

The	display	name	for	console.

master_host = <hostname>

The	Greenplum	Database	host	name.	The	default	is	 localhost .

master_port = <port>

The	Greenplum	Database	master	port.	The	default	is	 5432 .

HTTPSCertFile = </path/to/cert.pem>

The	full	path	to	the	server’s	SSL	certificate,	if	SSL	is	enabled.

HTTPSKeyFile = </path/to/cert.pem>

The	server’s	private	key	file	if	SSL	is	enabled.

EnableHTTPS = [true | false]

Enable	listening	on	the	secure	SSL	port.	The	default	is	 true .

EnableHTTP = [true | false]

Enable	listening	on	the	HTTP	port.	Default	is	 false .

httpsport = [port]

The	web	server	port.	The	default	is	28080.

©	Copyright	Pivotal	Software	Inc,	2013-2016 68 3.1.1

	

Setup	Configuration	File
A	setup	configuration	file	contains	properties	used	to	define	one	or	more	Greenplum	Command	Center	instances	when	 gpcmdr 	is	run	with	the	
--config_file 	option.

The	configuration	file	uses	the	Python	configuration	file	format,	similar	to	the	Microsoft	INI	file	format.	The	file	contains	sections,	introduced	by	a	
[section] 	header,	and	followed	by	 name:	value 	or	 name=value 	entries,	one	per	line.	Comments	begin	with	a	 # 	or	 ; 	character	and	continue	through	the
end	of	the	line.	A	 [DEFAULT] 	section	sets	default	values	for	parameters	that	may	be	overriden	in	other	sections.

See		Setting	Up	Command	Center	Instances	with	a	Configuration	File 	for	more	information.

Parameters
remote_db

True 	if	the	instance	is	to	run	on	a	different	host.	Default:	 False .

master_host

The	name	of	the	host	where	the	Greenplum	Command	Center	Console	is	to	be	set	up,	if	 remote_db 	is	 True .

instance_name

The	name	of	the	instance	to	set	up.	This	will	become	the	name	of	a	subdirectory	in	the	 instances 	directory	where	the	instances	configuration	and
log	files	are	stored.	Instance	names	may	contain	letters,	digits,	and	underscores	and	are	not	case	sensitive.

display_name

The	name	to	display	for	the	instance	in	the	Command	Center	user	interface.	Display	names	may	contain	letters,	digits,	and	underscores	and	are	case
sensitive.	 instance_name 	is	used	for	 display_name 	if	this	parameter	is	not	provided.

master_port

The	Greenplum	Database	master	port.	Default:	 5432 .

webserver_port

The	listen	port	for	the	Command	Center	go	web	server.	This	port	must	be	different	for	each	Command	Center	Console	instance	on	the	host.	Default:	
28080 .

enable_ssl

True 	if	client	connections	to	the	Command	Center	web	server	should	be	secured	with	SSL.	Default:	 False .

enable_user_cert

True 	if	the	server	certificate	is	supplied	by	the	user.	If	 False 	(default)	and	 enable_ssl 	is	 True ,	 gpcmdr 	generates	a	certificate	during	setup.
Data	for	the	certificate’s	CN	is	entered	interactively	during	setup.	Default:	 False .

ssl_cert_file

If	 enable_user_cert 	is	 True ,	set	this	parameter	to	the	full	path	to	a	valid	certificate	in	PEM	file	format.

enable_kerberos

Set	to	 True 	to	enable	Kerberos	authentication.

webserver_url

The	web	server	hostname,	from	the	Kerberos	HTTP	service	principal.

keytab

Path	to	the	keytab	file	containing	Kerberos	principals	for	the	Command	Center	web	server	and	users.

enable_copy_standby

Set	to	 True 	to	have	 gpcmdr 	install	the	instance	configuration	on	the	Greenplum	standby	master	host.

standby_master_host

The	name	of	the	Greenplum	standby	master	host.	Required	when	 enable_copy_standby 	is	 True .

Examples

©	Copyright	Pivotal	Software	Inc,	2013-2016 69 3.1.1

http://docs-gpcc-staging.cfapps.io/310/gpcc/topics/setup-install-gpcc.html#topic_sht_15z_xp__section_dgs_dwr_xs

This	example	configuration	sets	up	two	Command	Center	instances,	 prod 	and	 dev .	Parameters	in	the	 [DEFAULT] 	section	apply	to	all	instances	and
may	be	overridden	by	parameters	in	the	 [production] 	and	 [development] 	sections.

[DEFAULT]
remote_db=false
master_port=5432
#You	need	to	set	'enable_user_cert'	to	true	to	import	your	own	pem	file
enable_user_cert=true
ssl_cert_file=/tmp/cert.pem

[development]
instance_name=development
enable_copy_standby=false
webserver_port=28080
enable_ssl=false

[production]
instance_name=production
display_name=OurProduction
remote_db=true
master_host=mdw
master_port=15432
webserver_port=28081
enable_ssl=true
enable_user_cert=true
enable_copy_standby=true
standby_master_host=smdw

This	example	configuration	has	only	one	instance,	so	the	 [DEFAULT] 	section	and	section	headers	are	not	necessary.

instance_name=single
display_name=SINGLE
remote_db=true
master_host=10.152.10.149
master_port=5432
webserver_port=28082
enable_ssl=true
enable_user_cert=true
ssl_cert_file=/tmp/cert.pem
enable_copy_standby	=	true
standby_master_host=192.0.2.156

©	Copyright	Pivotal	Software	Inc,	2013-2016 70 3.1.1

	

Greenplum	Database	Server	Configuration	Parameters
The	following	parameters	must	be	uncommented	and	set	in	the	server	configuration	file	(postgresql.conf)	in	order	to	enable	the	Command	Center	data
collection	agents:

gp_enable_gpperfmon 	and	 gpperfmon_port 	must	be	set	in	both	the	master	and	segment	 postgresql.conf 	files.

gp_enable_gpperfmon 	and	 gp_enable_gpperfmon 	only	need	to	be	set	in	the	master	 postgresql.conf 	file.

After	changing	these	settings,	the	Greenplum	Database	instance	must	be	restarted	for	the	changes	to	take	effect.

gp_enable_gpperfmon
Turns	on	the	Command	Center	data	collection	agent	for	a	segment.	Must	be	set	in	all	 postgresql.conf 	files	(master	and	all	segments).

gpperfmon_port

The	default	port	for	the	Command	Center	agents	is	8888,	but	you	can	set	this	parameter	to	a	different	port	if	required	(master	and	all	segments).

gp_gpperfmon_send_interval
Sets	the	frequency	in	seconds	that	the	Greenplum	Database	server	processes	send	query	execution	updates	to	the	Command	Center	agent
processes.

gp_external_enable_exec
This	parameter	is	enabled	by	default	and	must	remain	enabled.	It	allows	the	use	of	external	tables	that	execute	OS	commands	or	scripts	on	the
segment	hosts.	The	Command	Center	agents	use	this	type	of	external	tables	to	collect	current	system	metrics	from	the	segments.

gpperfmon_log_alert_level
Controls	which	message	levels	are	written	to	the	gpperfmon	log.	Each	level	includes	all	the	levels	that	follow	it.	The	later	the	level,	the	fewer
messages	are	sent	to	the	log.	The	default	value	is	warning.

©	Copyright	Pivotal	Software	Inc,	2013-2016 71 3.1.1

	

Command	Center	Database	Reference
References	for	the	Greenplum	Command	Center	 gpperfmon 	database	tables.

The	Command	Center	database	consists	of	three	sets	of	tables;	 now 	tables	store	data	on	current	system	metrics	such	as	active	queries,	 history 	tables
store	data	on	historical	metrics,	and	 tail 	tables	are	for	data	in	transition.	 Tail 	tables	are	for	internal	use	only	and	should	not	be	queried	by	users.	The	
now 	and	 tail 	data	are	stored	as	text	files	on	the	master	host	file	system,	and	accessed	by	the	Command	Center	database	via	external	tables.	The	
history 	tables	are	regular	database	tables	stored	within	the	Command	Center	(gpperfmon)	database.

The	database	consists	of	three	sets	of	tables:

now 	tables	store	data	on	current	system	metrics	such	as	active	queries.

history 	tables	store	data	historical	metrics.

tail 	tables	are	for	data	in	transition.	These	tables	are	for	internal	use	only	and	should	not	be	queried	by	end	users.

The	database	contains	the	following	categories	of	tables:

The		database_*	tables	store	query	workload	information	for	a	Greenplum	Database	instance.

The		emcconnect_history	table	displays	information	about	ConnectEMC	events	and	alerts.	ConnectEMC	events	are	triggered	based	on	a	hardware
failure,	a	fix	to	a	failed	hardware	component,	or	a	Greenplum	Database	startup.	Once	an	ConnectEMC	event	is	triggered,	an	alert	is	sent	to	EMC
Support.

The		diskspace_*	tables	store	diskspace	metrics.

The		filerep_*	tables	store	health	and	status	metrics	for	the	file	replication	process.	This	process	is	how	high-availability/mirroring	is	achieved	in
Greenplum	Database	instance.	Statistics	are	maintained	for	each	primary-mirror	pair.

The		health_*	tables	store	system	health	metrics	for	the	EMC	Data	Computing	Appliance.

The		interface_stats_*	tables	store	statistical	metrics	for	each	active	interface	of	a	Greenplum	Database	instance.	Note:	These	tables	are	in	place	for
future	use	and	are	not	currently	populated.

The		iterators_*	tables	store	information	about	query	plan	iterators	and	their	metrics.	A	query	iterator	refers	to	a	node	or	operation	in	a	query	plan.

The		log_alert_*	tables	store	information	about	pg_log	errors	and	warnings.

The		queries_*	tables	store	high-level	query	status	information.

The		segment_*	tables	store	memory	allocation	statistics	for	the	Greenplum	Database	segment	instances.

The		socket_stats_*	tables	store	statistical	metrics	about	socket	usage	for	a	Greenplum	Database	instance.	Note:	These	tables	are	in	place	for	future
use	and	are	not	currently	populated.

The		system_*	tables	store	system	utilization	metrics.

The		tcp_stats_*	tables	store	statistical	metrics	about	TCP	communications	for	a	Greenplum	Database	instance.	Note:	These	tables	are	in	place	for
future	use	and	are	not	currently	populated.

The		udp_stats_*	tables	store	statistical	metrics	about	UDP	communications	for	a	Greenplum	Database	instance.	Note:	These	tables	are	in	place	for
future	use	and	are	not	currently	populated.

The	Command	Center	database	also	contains	the	following	views:

The		dynamic_memory_info	view	shows	an	aggregate	of	all	the	segments	per	host	and	the	amount	of	dynamic	memory	used	per	host.

The		iterators_*_rollup	set	of	views	summarize	the	query	iterator	metrics	across	all	segments	in	the	system.

The		memory_info	view	shows	per-host	memory	information	from	the	 system_history 	and	 segment_history 	tables.

©	Copyright	Pivotal	Software	Inc,	2013-2016 72 3.1.1

	

database_*
The	 database_* 	tables	store	query	workload	information	for	a	Greenplum	Database	instance.	There	are	three	database	tables,	all	having	the	same
columns:

database_now 	is	an	external	table	whose	data	files	are	stored	in $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	query	workload	data	is	stored
in	 database_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	
database_history 	table.

database_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	query
workload	data	that	has	been	cleared	from	database_now	but	has	not	yet	been	committed	to	 database_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

database_history 	is	a	regular	table	that	stores	historical	database-wide	query	workload	data.	It	is	pre-partitioned	into	monthly	partitions.
Partitions	are	automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer
needed.

Column Type Description

ctime timestamp Time	this	row	was	created.

queries_total int The	total	number	of	queries	in	Greenplum	Database	at	data	collection	time.

queries_running int The	number	of	active	queries	running	at	data	collection	time.

queries_queued int The	number	of	queries	waiting	in	a	resource	queue	at	data	collection	time.

©	Copyright	Pivotal	Software	Inc,	2013-2016 73 3.1.1

	

emcconnect_history
The	 emcconnect_history 	table	displays	information	about	ConnectEMC	events	and	alerts.	ConnectEMC	events	are	triggered	based	on	a	hardware	failure,	a
fix	to	a	failed	hardware	component,	or	a	Greenplum	Database	instance	startup.	Once	an	ConnectEMC	event	is	triggered,	an	alert	is	sent	to	EMC	Support.

This	table	is	pre-partitioned	into	monthly	partitions.	Partitions	are	automatically	added	in	one	month	increments	as	needed.	Administrators	must	drop
old	partitions	for	the	months	that	are	no	longer	needed.

	Note:	This	table	only	applies	to	Greenplum	Data	Computing	Appliance	platforms.

ctime timestamp(0)	without	time	zone	 Time	this	ConnectEMC	event	occurred.

hostname varchar(64)
The	hostname	associated	with	the	ConnectEMC
event.

symptom_code int

A	general	symptom	code	for	this	type	of	event.
For	a	list	of	symptom	codes,	see	the	EMC
Greenplum	DCA	Installation	and	Configuration
Guide.

detailed_symptom_code int A	specific	symptom	code	for	this	type	of	event.

description text
A	description	of	this	type	of	event,	based	on	the	
detailed_symptom_code .

snmp_oid text
The	SNMP	object	ID	of	the	element/component
where	the	event	occurred,	where	applicable.

severity text

The	severity	level	of	the	ConnectEMC	event.	One
of:

WARNING :	A	condition	that	might	require
immediate	attention.

ERROR :	An	error	occurred	on	the	DCA.	System
operation	and/or	performance	is	likely	affected.
This	alert	requires	immediate	attention.

UNKNOWN :	This	severity	level	is	associated
with	hosts	and	devices	on	the	DCA	that	are
either	disabled	(due	to	hardware	failure)	or
unreachable	for	some	other	reason.	This	alert
requires	immediate	attention.

INFO :	A	previously	reported	error	condition	is
now	resolved.	Greenplum	Database	startup	also
triggers	an	INFO	alert.

status text

The	current	status	of	the	system.	The	status	is
always	 OK 	unless	a	connection	to	the
server/switch	cannot	be	made,	in	which	case	the
status	is	 FAILED .

attempted_transport boolean

True 	if	an	attempt	was	made	to	send	an	alert	to
EMC	support.

False 	if	your	system	was	configured	not	to	send
alerts.

message text
The	text	of	the	error	message	created	as	a	result
of	this	event.

©	Copyright	Pivotal	Software	Inc,	2013-2016 74 3.1.1

	

diskspace_*
The	 diskspace_* 	tables	store	diskspace	metrics.

diskspace_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	diskspace	metrics	are	stored
in	 database_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	
diskspace_history 	table.

diskspace_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for
diskspace	metrics	that	have	been	cleared	from	 diskspace_now 	but	has	not	yet	been	committed	to	 diskspace_history .	It	typically	only	contains	a
few	minutes	worth	of	data.

diskspace_history 	is	a	regular	table	that	stores	historical	diskspace	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

ctime timestamp(0)	without	time	zone	 Time	of	diskspace	measurement.

hostname 	varchar(64) The	hostname	associated	with	the	diskspace	measurement.

Filesystem text Name	of	the	filesystem	for	the	diskspace	measurement.

total_bytes bigint Total	bytes	in	the	file	system.

bytes_used bigint Total	bytes	used	in	the	file	system.

bytes_available bigint Total	bytes	available	in	file	system.

©	Copyright	Pivotal	Software	Inc,	2013-2016 75 3.1.1

	

filerep_*
The	 filerep* 	tables	store	high-availability	file	replication	process	information	for	a	Greenplum	Database	instance.	There	are	three	filerep	tables,	all	having
the	same	columns:

filerep_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	file	replication	data	is	stored	in	
filerep_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	 filerep_history
table.

filerep_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	file
replication	data	that	has	been	cleared	from filerep_now 	but	has	not	yet	been	committed	to	 filerep_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

filerep_history 	is	a	regular	table	that	stores	historical	database-wide	file	replication	data.	It	is	pre-partitioned	into	monthly	partitions.	Partitions
are	automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

ctime timestamp Time	this	row	was	created.

primary_measurement_microsec bigint
The	length	of	time	over	which	primary	metrics
(contained	in	UDP	messages)	were	gathered.

mirror_measurement_microsec bigint
The	length	of	time	over	which	mirror	metrics
(contained	in	UDP	messages)	were	gathered.

primary_hostname varchar(64) The	name	of	the	primary	host.

primary_port int The	port	number	of	the	primary	host.

mirror_hostname varchar(64)	 The	name	of	the	mirror	host.

mirror_port int The	port	number	of	the	mirror	host.

primary_write_syscall_bytes_avg bigint
The	average	amount	of	data	written	to	disk	on
the	primary	for	write	system	calls	per	interval.

primary_write_syscall_byte_max bigint
The	maximum	amount	of	data	written	to	disk
on	the	primary	for	write	system	calls	per
interval.

primary_write_syscall_microsecs_avg bigint
The	average	time	required	for	a	write	system
call	to	write	data	to	disk	on	the	primary	per
interval.

primary_write_syscall_microsecs_max bigint

The	maximum	time	required	for	a	write	system

call	to	write	data	to	disk	on	the	primary	per
interval.

primary_write_syscall_per_sec double	precision
The	number	of	write	system	calls	on	the
primary	per	second.	It	reflects	only	the	time	to
queue	the	write	to	disk	in	memory.

primary_fsync_syscall_microsec_avg bigint
The	average	amount	of	time	required	for	a	file
sync	system	call	to	write	data	to	disk	on	the
primary	per	interval.

primary_fsync_syscall_microsec_max bigint
The	maximum	amount	of	time	required	for	a	file
sync	system	call	to	write	data	to	disk	on	the
primary	per	interval.

primary_fsync_syscall_per_sec double	precision

The	number	of	file	sync	system	calls	on	the
primary	per	second.	Unlike	write	system	calls
which	return	immediately	after	the	data	is
posted/queued,	file	sync	system	calls	wait	for
all	outstanding	writes	to	be	written	to	disk.	File
sync	system	call	values	in	this	column	reflect
actual	disk	access	times	for	potentially	large
amounts	of	data.

primary_write_shmem_bytes_avg bigint
The	average	amount	of	data	written	to	shared

©	Copyright	Pivotal	Software	Inc,	2013-2016 76 3.1.1

primary_write_shmem_bytes_avg bigint
memory	on	the	primary	per	interval.

primary_write_shmem_bytes_max bigint
The	maximum	amount	of	data	written	to	shared
memory	on	the	primary	per	interval.

primary_write_shmem_microsec_avg bigint
The	average	amount	of	time	required	to	write
data	to	shared	memory	on	the	primary	per
interval.

primary_write_shmem_microsec_max bigint
The	maximum	amount	of	time	required	to	write
data	to	shared	memory	on	the	primary	per
interval.

primary_write_shmem_per_sec double	precision
The	number	of	writes	to	shared	memory	on	the
primary	per	second.

primary_fsync_shmem_microsec_avg bigint

The	average	amount	of	time	required	by	the	file
sync	system	call	to	write	data	to	shared	memory
on	the	primary	per	interval.

primary_fsync_shmem_microsec_max bigint
The	maximum	amount	of	time	required	by	the
file	sync	system	call	to	write	data	to	shared
memory	on	the	primary	per	interval.

primary_fsync_shmem_per_sec double	precision

The	number	of	file	sync	calls	to	shared	memory
on	the	primary	per	second.	File	sync	system	call
values	in	this	column	reflect	actual	disk	access
times	for	potentially	large	amounts	of	data.

primary_write_shmem_per_sec double	precision
The	number	of	writes	to	shared	memory	on	the
primary	per	second.

primary_fsync_shmem_microsec_avg bigint
The	average	amount	of	time	required	by	the	file
sync	system	call	to	write	data	to	shared	memory
on	the	primary	per	interval.

primary_fsync_shmem_microsec_max bigint
The	maximum	amount	of	time	required	by	the
file	sync	system	call	to	write	data	to	shared
memory	on	the	primary	per	interval.

primary_fsync_shmem_per_sec double	precision

The	number	of	file	sync	calls	to	shared	memory
on	the	primary	per	second.	File	sync	system	call
values	in	this	column	reflect	actual	disk	access
times	for	potentially	large	amounts	of	data.

primary_roundtrip_fsync_msg_microsec_avg bigint

The	average	amount	of	time	required	for	a
roundtrip	file	sync	between	the	primary	and	the
mirror	per	interval.	This	includes:

1.	 The	queuing	of	a	file	sync	message	from
the	primary	to	the	mirror.

2.	 The	message	traversing	the	network.

3.	 The	execution	of	the	file	sync	by	the
mirror.

4.	 The	file	sync	acknowledgement	traversing
the	network	back	to	the	primary.

The	maximum	amount	of	time	required	for	a
roundtrip	file	sync	between	the	primary	and	the
mirror	per	interval.	This	includes:

©	Copyright	Pivotal	Software	Inc,	2013-2016 77 3.1.1

primary_roundtrip_fsync_msg_microsec_max bigint

1.	 The	queuing	of	a	file	sync	message	from
the	primary	to	the	mirror.

2.	 The	message	traversing	the	network.

3.	 The	execution	of	the	file	sync	by	the
mirror.

4.	 The	file	sync	acknowledgement	traversing
the	network	back	to	the	primary.

primary_roundtrip_fsync_msg_per_sec double	precision The	number	of	roundtrip	file	syncs	per	second.

primary_roundtrip_test_msg_microsec_avg bigint

The	average	amount	of	time	required	for	a
roundtrip	test	message	between	the	primary
and	the	mirror	to	complete	per	interval.	This	is
similar	to	 primary_roundtrip_fsync_msg_microsec_avg ,
except	it	does	not	include	a	disk	access
component.	Because	of	this,	this	is	a	useful
metric	that	shows	the	average	amount	of
network	delay	in	the	file	replication	process.

primary_roundtrip_test_msg_microsec_max bigint

The	maximum	amount	of	time	required	for	a
roundtrip	test	message	between	the	primary
and	the	mirror	to	complete	per	interval.	This	is
similar	to	 primary_roundtrip_fsync_msg_microsec_max

,	except	it	does	not	include	a	disk	access
component.	Because	of	this,	this	is	a	useful
metric	that	shows	the	maximum	amount	of
network	delay	in	the	file	replication	process.

primary_roundtrip_test_msg_per_sec double	precision

The	number	of	roundtrip	file	syncs	per	second.
This	is	similar	to	
primary_roundtrip_fsync_msg_per_sec ,	except	it	does
not	include	a	disk	access	component.	As	such,
this	is	a	useful	metric	that	shows	the	amount	of
network	delay	in	the	file	replication	process.

Note	that	test	messages	typically	occur	once
per	minute,	so	it	is	common	to	see	a	value	of	“0”
for	time	periods	not	containing	a	test	message.

mirror_write_syscall_size_avg bigint
The	average	amount	of	data	written	to	disk	on
the	mirror	for	write	system	calls	per	interval.

mirror_write_syscall_size_max bigint
The	maximum	amount	of	data	written	to	disk
on	the	mirror	for	write	system	calls	per	interval.

mirror_write_syscall_microsec_avg bigint
The	average	time	required	for	a	write	system
call	to	write	data	to	disk	on	the	mirror	per
interval.

mirror_write_syscall_microsec_max bigint
The	maximum	time	required	for	a	write	system
call	to	write	data	to	disk	on	the	mirror	per
interval.

primary_roundtrip_test_msg_per_sec double	precision

The	number	of	roundtrip	file	syncs	per	second.
This	is	similar	to	
primary_roundtrip_fsync_msg_per_sec ,	except	it	does
not	include	a	disk	access	component.	As	such,
this	is	a	useful	metric	that	shows	the	amount	of
network	delay	in	the	file	replication	process.

©	Copyright	Pivotal	Software	Inc,	2013-2016 78 3.1.1

Note	that	test	messages	typically	occur	once
per	minute,	so	it	is	common	to	see	a	value	of	“0”
for	time	periods	not	containing	a	test	message.

mirror_write_syscall_size_avg bigint
The	average	amount	of	data	written	to	disk	on
the	mirror	for	write	system	calls	per	interval.

mirror_write_syscall_size_max bigint

The	maximum	amount	of	data	written	to	disk

on	the	mirror	for	write	system	calls	per	interval.

mirror_write_syscall_microsec_avg bigint
The	average	time	required	for	a	write	system
call	to	write	data	to	disk	on	the	mirror	per
interval.

©	Copyright	Pivotal	Software	Inc,	2013-2016 79 3.1.1

	

health_*
The	 health_* 	tables	store	system	health	metrics	for	the	EMC	Data	Computing	Appliance.	There	are	three	health	tables,	all	having	the	same	columns:

	Note:	This	table	only	applies	to	Greenplum	Data	Computing	Appliance	platforms.

health_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	system	health	data	is	stored	in	
system_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	 system_history 	table.

health_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	system
health	data	that	has	been	cleared	from	 system_now 	but	has	not	yet	been	committed	to	 system_history .	It	typically	only	contains	a	few	minutes
worth	of	data.

health_history 	is	a	regular	table	that	stores	historical	system	health	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

ctime
timestamp(0)
without	time	zone

Time	this	snapshot	of	health	information	about	this	system	was	created.

hostname varchar(64) Segment	or	master	hostname	associated	with	this	health	information.

symptom_code int The	symptom	code	related	to	the	current	health/status	of	an	element	or	component	of	the	system.

detailed_symptom_code int
A	more	granular	symptom	code	related	to	the	health/status	of	a	element	or	component	of	the
system.

description text A	description	of	the	health/status	of	this	symptom	code.

snmp_oid text The	SNMP	object	ID	of	the	element/component	where	the	event	occurred,	where	applicable.

status text
The	current	status	of	the	system.	The	status	is	always	 OK 	unless	a	connection	to	the	server/switch
cannot	be	made,	in	which	case	the	status	is	 FAILED .

message text The	text	of	the	error	message	created	as	a	result	of	this	event.

©	Copyright	Pivotal	Software	Inc,	2013-2016 80 3.1.1

	

interface_stats_*
The	 interface_stats_* 	tables	store	statistical	metrics	about	communications	over	each	active	interface	for	a	Greenplum	Database	instance.

These	tables	are	in	place	for	future	use	and	are	not	currently	populated.

There	are	three	 interface_stats 	tables,	all	having	the	same	columns:

interface_stats_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .

interface_stats_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for
statistical	interface	metrics	that	has	been	cleared	from	 interface_stats_now 	but	has	not	yet	been	committed	to	 interface_stats_history .	It
typically	only	contains	a	few	minutes	worth	of	data.

interface_stats_history 	is	a	regular	table	that	stores	statistical	interface	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	one	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

interface_name string Name	of	the	interface.	For	example:	eth0,	eth1,	lo.

bytes_received bigint Amount	of	data	received	in	bytes.

packets_received bigint Number	of	packets	received.

receive_errors bigint Number	of	errors	encountered	while	data	was	being	received.

receive_drops bigint Number	of	times	packets	were	dropped	while	data	was	being	received.

receive_fifo_errors bigint Number	of	times	FIFO	(first	in	first	out)	errors	were	encountered	while	data	was	being	received.

receive_frame_errors bigint Number	of	frame	errors	while	data	was	being	received.

receive_compressed_packets int Number	of	packets	received	in	compressed	format.

receive_multicast_packets int Number	of	multicast	packets	received.

bytes_transmitted bigint Amount	of	data	transmitted	in	bytes.

packets_transmitted bigint Amount	of	data	transmitted	in	bytes.

packets_transmitted bigint Number	of	packets	transmitted.

transmit_errors bigint Number	of	errors	encountered	during	data	transmission.

transmit_drops bigint Number	of	times	packets	were	dropped	during	data	transmission.

transmit_fifo_errors bigint Number	of	times	fifo	errors	were	encountered	during	data	transmission.

transmit_collision_errors bigint Number	of	times	collision	errors	were	encountered	during	data	transmission.

transmit_carrier_errors bigint Number	of	times	carrier	errors	were	encountered	during	data	transmission.

transmit_compressed_packets int Number	of	packets	transmitted	in	compressed	format.

©	Copyright	Pivotal	Software	Inc,	2013-2016 81 3.1.1

	

iterators_*
The	 iterators_* 	tables	store	information	about	query	plan	iterators	and	their	metrics.	A	query	iterator	refers	to	a	node	or	operation	in	a	query	plan.	For
example,	a	sequential	scan	operation	on	a	table	may	be	one	type	of	iterator	in	a	particular	query	plan.

The	 tmid ,	 ssid 	and	 ccnt 	columns	are	the	composite	key	that	uniquely	identifies	a	particular	query.	These	columns	can	be	used	to	join	with	the	
queries_* 	data	tables.

There	are	three	iterator	tables,	all	having	the	same	columns:

iterators_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	query	plan	iterator	data	is
stored	in	 iterators_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	
iterators_history 	table.

iterators_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	query
plan	iterator	data	that	has	been	cleared	from	 iterators_now 	but	has	not	yet	been	committed	to	 iterators_history .	It	typically	only	contains	a
few	minutes	worth	of	data.

iterators_history 	is	a	regular	table	that	stores	historical	query	plan	iterator	data.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

See	also	the		iterator_rollup	views	for	summary	metrics	of	the	query	plan	iterator	data.

ctime timestamp Time	this	row	was	created.

tmid int
A	time	identifier	for	a	particular	query.	All
iterator	records	associated	with	the	query	will
have	the	same	tmid.

ssid int
The	session	id	as	shown	by	the	 gp_session_id
parameter.	All	iterator	records	associated	with
the	query	will	have	the	same	 ssid .

ccnt int

The	command	number	within	this	session	as
shown	by	 gp_command_count 	parameter.	All
iterator	records	associated	with	the	query	will
have	the	same	 ccnt .

segid int
The	segment	ID	(dbid 	from	
gp_segment_configuration).

pid int The	postgres	process	ID	for	this	iterator.

nid int

The	query	plan	node	ID	from	the	Greenplum

slice	plan.

pnid int
The	parent	query	plan	node	ID	from	the
Greenplum	slice	plan.

hostname varchar(64) Segment	hostname.

ntype varchar(64)
The	iterator	operation	type.	Possible	values	are
listed	in	[Iterator	Metrics](db-iterator-
metrics.html).

nstatus varchar(64)
The	status	of	this	iterator.	Possible	values	are:
Initialize,	Executing	and	Finished.

tstart timestamp Start	time	for	the	iterator.

tduration int Duration	of	the	execution.

pmemsize bigint
Maximum	work	memory	allocated	by	the
Greenplum	planner	to	this	iterator’s	query
process.

memsize bigint OS	memory	allocated	to	this	iterator’s	process.

memresid bigint
Resident	memory	allocated	to	this	iterator’s
process	(as	opposed	to	shared	memory).

Shared	memory	allocated	to	this	iterator’s

©	Copyright	Pivotal	Software	Inc,	2013-2016 82 3.1.1

memshare bigint
Shared	memory	allocated	to	this	iterator’s
process.

cpu_elapsed bigint
Total	CPU	usage	of	the	process	executing	the
iterator.

cpu_currpct float
The	percentage	of	CPU	currently	being	utilized
by	this	iterator	process.	This	value	is	always	zero
for	historical	(completed)	iterators.

rowsout bigint
The	actual	number	of	rows	output	by	the
iterator.

rowsout_est bigint
The	query	planner’s	estimate	of	rows	output	by
the	iterator.

m0_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has

metrics	associated	with	it.	For	all	operations,
this	metric	name	is	 Rows In .

m0_unit varchar(64)
The	unit	of	measure	for	this	metric.	For	all
operations	(ntype),	this	unit	of	measure	is	
Rows .

m0_val bigint The	value	of	this	metric.

m0_est bigint The	estimated	value	of	this	metric.

m1_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m1_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m1_val bigint The	value	of	this	metric.

m1_est bigint The	estimated	value	of	this	metric.

m2_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m2_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m2_val bigint The	value	of	this	metric.

m2_est bigint The	estimated	value	of	this	metric.

m3_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m3_unit
varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a

complete	list	of	iterator	attributes	and	their
corresponding	units.

m3_val bigint The	value	of	this	metric.

m3_est bigint The	estimated	value	of	this	metric.

m4_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding

©	Copyright	Pivotal	Software	Inc,	2013-2016 83 3.1.1

iterator	attributes	and	their	corresponding
units.

m4_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m4_val bigint The	value	of	this	metric.

m4_est bigint The	estimated	value	of	this	metric.

m5_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m5_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m5_val bigint The	value	of	this	metric.

m5_est bigint The	estimated	value	of	this	metric.

m6_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m6_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m6_val bigint The	value	of	this	metric.

m6_est bigint The	estimated	value	of	this	metric.

m7_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m7_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m7_val bigint The	value	of	this	metric.

m7_est bigint The	estimated	value	of	this	metric.

m8_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

m8_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m8_val bigint The	actual	value	of	this	metric.

m8_est bigint The	estimated	value	of	this	metric.

m9_name varchar(64)

Each	operation	in	a	query	plan	(ntype)	has
metrics	associated	with	it.	See	[Iterator	Metrics]
(db-iterator-metrics.html)	for	a	complete	list	of
iterator	attributes	and	their	corresponding
units.

The	unit	of	measure	for	this	metric.	See	[Iterator

©	Copyright	Pivotal	Software	Inc,	2013-2016 84 3.1.1

m9_unit varchar(64)

The	unit	of	measure	for	this	metric.	See	[Iterator
Metrics](db-iterator-metrics.html)	for	a
complete	list	of	iterator	attributes	and	their
corresponding	units.

m9_val bigint The	actual	value	of	this	metric.

m9_est bigint The	estimated	value	of	this	metric.

m10_name 	-	 m15_name varchar(64) The	iterator	name	(ntype)	associated	with	this
metric.	Metrics	 m10 	through	 m15 	are
currently	not	used.

m10_unit 	-	 m15_unit varchar(64)
The	unit	of	measure	for	this	metric.	Metrics	
m10 	through m15 	are	currently	not	used.

m10_value 	-	 m15_value bigint
The	actual	value	of	this	metric.	Metrics	 m10
through	 m15 	are	currently	not	used.

m10_est 	-	 m15_est bigint
The	estimated	value	of	this	metric.	Metrics	 m10
through	 m15 	are	currently	not	used.

t0_name varchar(64)
This	column	is	a	label	for	 t0_val .	Its	value	is
always	 Name .

t0_val varchar(128)

The	name	of	the	relation	being	scanned	by	an
iterator.	This	metric	is	collected	only	for
iterators	that	perform	scan	operations	such	as	a
sequential	scan	or	function	scan.

©	Copyright	Pivotal	Software	Inc,	2013-2016 85 3.1.1

	

Iterator	Metrics
The	tables	in	this	section	list	all	possible	iterators	in	a	query	on	Greenplum	Database	instance.	The	iterator	tables	include	the	metric	name,	the	column	in
the	 iterators_* 	table	in	the	 gpperfmon 	database	where	the	metric	appears,	how	the	metric	is	measured	(unit),	and	a	description	of	the	metric.

	Metric	Terminology

The	following	information	explains	some	of	the	database	terms	and	concepts	that	appear	in	iterator	metrics	in	Greenplum	Database:

Node
Refers	to	a	step	in	a	query	plan.	A	query	plan	has	sets	of	operations	that	Greenplum	Database	performs	to	produce	the	answer	to	a	given	query.	A	node	in
the	plan	represents	a	specific	database	operation,	such	as	a	table	scan,	join,	aggregation,	sort,	etc.

Iterator
Represents	the	actual	execution	of	the	node	in	a	query	plan.	Node	and	iterator	are	sometimes	used	interchangeably.

Tuple
Refers	to	a	row	returned	as	part	of	a	result	set	from	a	query,	as	well	as	a	record	in	a	table.

Spill
When	there	is	not	enough	memory	to	perform	a	database	operation,	data	must	be	written	(or	spilled)	to	disk.

Passes
Occur	when	an	iterator	must	scan	(or	pass)	over	spilled	data	to	obtain	a	result.	A	pass	represents	one	pass	through	all	input	tuples,	or	all	data	in	batch
files	generated	after	spill,	which	happens	hierarchically.	In	the	first	pass,	all	input	tuples	are	read,	and	intermediate	results	are	spilled	to	a	specified
number	of	batch	files.	In	the	second	pass,	the	data	in	all	batch	files	is	processed.	If	the	results	are	still	too	large	to	store	in	memory,	the	intermediate
results	are	spilled	to	the	second	level	of	spill	files,	and	the	process	repeats	again.

Batches
Refers	to	the	actual	files	created	when	data	is	spilled	to	disk.	This	is	most	often	associated	to	Hash	operations.

Join
This	clause	in	a	query	joins	two	or	more	tables.	There	are	three	types	of	Join	algorithms	in	Greenplum	Database	instance:

Hash	Join

Merge	Join

Nested	Loop

Each	of	these	operations	include	their	own	respective	Join	semantics.	The	Command	Center	Console	displays	iterator	metrics	for	each	of	these
semantics.

	Append

An	Append	iterator	has	two	or	more	input	sets.	Append	returns	all	rows	from	the	first	input	set,	then	all	rows	from	the	second	input	set,	and	so	on,	until	all
rows	from	all	input	sets	are	processed.	Append	is	also	used	when	you	select	from	a	table	involved	in	an	inheritance	hierarchy.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Append	Current	Input	Source m1_name Inputs The	number	of	the	current	table	being	scanned.

	Append-Only	Scan

This	iterator	scans	append-only	type-tables.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Append-only	Scan	Rescan m1_name Rescans
The	number	of	append-only
rescans	by	this	iterator.

	Append-only	Columnar	Scan

This	iterator	scans	append-only	columnar-type	tables.

Rows	in m0_name Rows
The	number	of	tuples	received	by

©	Copyright	Pivotal	Software	Inc,	2013-2016 86 3.1.1

the	iterator.

Append-Only	Columnar	Scan
Rescan

m1_name Rescans
The	number	of	append-only
columnar	rescans	by	this	iterator.

	Aggregate

The	query	planner	produces	an	aggregate	iterator	whenever	the	query	includes	an	aggregate	function.	For	example,	the	following	functions	are
aggregate	functions:	 AVG() ,	 COUNT() ,	 MAX() ,	 MIN() ,	 STDDEV() ,	 SUM() ,	and	 VARIANCE() .	Aggregate	reads	all	the	rows	in	the	input	set	and
computes	the	aggregate	values.	If	the	input	set	is	not	grouped,	Aggregate	produces	a	single	result	row.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Aggregate	Total	Spill	Tuple m1_name
Tuples

The	number	of	tuples	spilled	to
disk

Aggregate	Total	Spill	Bytes m2_name Bytes The	number	of	bytes	spilled	to	disk.

Aggregate	Total	Spill	Batches m3_name Batches
The	number	of	spill	batches
required.

Aggregate	Total	Spill	Pass m4_name Passes
The	number	of	passes	across	all	of
the	batches.

Aggregate	Current	Spill	Pass	Read
Tuples

m5_name Tuples
The	number	of	bytes	read	in	for	this
spill	batch.

Aggregate	Current	Spill	Pass	Read
Bytes

m6_name Bytes
The	number	of	tuples	read	in	for
this	spill	batch.

Aggregate	Current	Spill	Pass	Tuples m7_name Tuples
The	number	of	tuples	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass	Bytes m8_name Bytes
The	number	of	bytes	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass
Batches

m9_name Batches
The	number	of	batches	created	in
the	current	pass.

	BitmapAnd

This	iterator	takes	the	bitmaps	generated	from	multiple	BitmapIndexScan	iterators,	puts	them	together	with	an	 AND 	clause,	and	generates	a	new
bitmap	as	its	output.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	BitmapOr

This	iterator	takes	the	bitmaps	generated	from	multiple	BitmapIndexScan	iterators,	puts	them	together	with	an	 OR 	clause,	and	generates	a	new	bitmap
as	its	output.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Bitmap	Append-Only	Scan

This	iterator	retrieves	all	rows	from	the	bitmap	generated	by	BitmapAnd,	BitmapOr,	or	BitmapIndexScan	and	accesses	the	append-only	table	to	retrieve
the	relevant	rows.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Bitmap	Heap	Scan

This	iterator	retrieves	all	rows	from	the	bitmap	generated	by	BitmapAnd,	BitmapOr,	or	BitmapIndexScan	and	accesses	the	heap	table	to	retrieve	the
relevant	rows.

©	Copyright	Pivotal	Software	Inc,	2013-2016 87 3.1.1

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Bitmap	Heap	Scan	Pages m1_name Pages The	number	of	bitmap	heap	pages	scanned.

Bitmap	Heap	Scan	Rescan m2_name Rescans The	number	of	bitmap	heap	page	rescans	by	this	iterator.

	Bitmap	Index	Scan

This	iterator	produces	a	bitmap	that	corresponds	to	the	rules	that	satisfy	the	query	plan.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Bitmap	Index	Scan	Rescan m1_name Rescans The	number	of	bitmap	index	rescans	by	this	iterator.

	Broadcast	Motion

Note	that	the	 Motion 	metrics	for	the	iterator	are	useful	when	investigating	potential	networking	issues	in	the	Greenplum	Database	system.	Typically,	the
“Ack	Time”	values	should	be	very	small	(microseconds	or	milliseconds).	However	if	the	“Ack	Time”	values	are	one	or	more	seconds	(particularly	the
“Motion	Min	Ack	Time”	metric),	then	a	network	performance	issue	likely	exists.

Also,	if	there	are	a	large	number	of	packets	being	dropped	because	of	queue	overflow,	you	can	increase	the	value	for	the gp_interconnect_queue_depth 	system
configuration	parameter	to	improve	performance.	See	the	Greenplum	Database	Reference	Guide	for	more	in	formation	about	system	configuration
parameters.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Motion	Bytes	Sent m1_name Bytes
The	number	of	bytes	sent	by	the
iterator.

Motion	Total	Ack	Time m2_name Microseconds

The	total	amount	of	time	that	the
iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Average	Ack	Time m3_name Microseconds

The	average	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Max	Ack	Time m4_name Microseconds

The	maximum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Min	Ack	Time m5_name Microseconds

The	minimum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Count	Resent m6_name Packets

The	total	number	of	packets	that
the	iterator	did	not	acknowledge
when	they	first	arrived	in	the
queue.

Motion	Max	Resent m7_name Packets

The	maximum	number	of	packets
that	the	iterator	did	not
acknowledge	when	they	first
arrived	in	the	queue.	This	metric	is
applied	on	a	per	packet	basis.	For
example,	a	value	of	“10”	indicates
that	a	particular	packet	did	not	get
acknowledged	by	this	iterator	10
times,	and	that	this	was	the
maximum	for	this	iterator.

Motion	Bytes	Received m8_name Bytes
The	number	of	bytes	received	by
the	iterator.

©	Copyright	Pivotal	Software	Inc,	2013-2016 88 3.1.1

Motion	Count	Dropped m9_name Packets
The	number	of	packets	dropped	by
the	iterator	because	of	buffer
overruns.

	Explicit	Redistribute	Motion

The	Explicit	Redistribute	iterator	moves	tuples	to	segments	explicitly	specified	in	the	segment	ID	column	of	the	tuples.	This	differs	from	a	Redistribute
Motion	iterator,	where	target	segments	are	indirectly	specified	through	hash	expressions.	The	Explicit	Redistribute	iterator	is	used	when	the	query	portion
of	a	DML	planned	statement	requires	moving	tuples	across	distributed	tables.

Note	that	the	Motion	metrics	for	the	iterator	are	useful	when	investigating	potential	networking	issues	in	the	Greenplum	Database	system.	Typically,	the
“Ack	Time”	values	should	be	very	small	(microseconds	or	milliseconds).	However	if	the	“Ack	Time”	values	are	one	or	more	seconds	(particularly	the
“Motion	Min	Ack	Time”	metric),	then	a	network	performance	issue	likely	exists.

Also,	if	there	are	a	large	number	of	packets	being	dropped	because	of	queue	overflow,	you	can	increase	the	value	for	the	 gp_interconnect_queue_depth
system	configuration	parameter	to	improve	performance.	See	the	Greenplum	Database	Reference	Guide	for	more	in	formation	about	system
configuration	parameters.

.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Motion	Bytes	Sent m1_name Bytes
The	number	of	bytes	sent	by	the
iterator.

Motion	Total	Ack	Time m2_name Microseconds

The	total	amount	of	time	that	the
iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Average	Ack	Time m3_name Microseconds

The	average	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Max	Ack	Time m4_name Microseconds

The	maximum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Min	Ack	Time m5_name Microseconds

The	minimum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Count	Resent m6_name Packets

The	total	number	of	packets	that
the	iterator	did	not	acknowledge
when	they	first	arrived	in	the
queue.

Motion	Max	Resent m7_name Packets

The	maximum	number	of	packets
that	the	iterator	did	not
acknowledge	when	they	first
arrived	in	the	queue.	This	metric	is
applied	on	a	per	packet	basis.	For
example,	a	value	of	“10”	indicates
that	a	particular	packet	did	not	get
acknowledged	by	this	iterator	10
times,	and	that	this	was	the
maximum	for	this	iterator.

Motion	Bytes	Received m8_name Bytes
The	number	of	bytes	received	by
the	iterator.

Motion	Count	Dropped m9_name Packets
The	number	of	packets	dropped	by
the	iterator	because	of	buffer
overruns.

©	Copyright	Pivotal	Software	Inc,	2013-2016 89 3.1.1

	External	Scan

This	iterator	scans	an	external	table.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

External	Scan	Rescan m1_name Rescans The	number	of	external	table	rescans	by	this	iterator.

	Function	Scan

This	iterator	returns	tuples	produced	by	a	function.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Gather	Motion

This	iterator	gathers	streams	of	tuples	that	are	sent	by	“sending”	motions.	If	a	merge	key	is	specified,	it	merges	many	streams	into	a	single	order-
preserved	stream.

Note	that	the	Motion	metrics	for	the	iterator	are	useful	when	investigating	potential	networking	issues	in	the	Greenplum	Database	system.	Typically,	the
“Ack	Time”	values	should	be	very	small	(microseconds	or	milliseconds).	However	if	the	“Ack	Time”	values	are	one	or	more	seconds	(particularly	the
“Motion	Min	Ack	Time”	metric),	then	a	network	performance	issue	likely	exists.

Also,	if	there	are	a	large	number	of	packets	being	dropped	because	of	queue	overflow,	you	can	increase	the	value	for	the	 gp_interconnect_queue_depth
system	configuration	parameter	to	improve	performance.	See	the	Greenplum	Database	Reference	Guide	for	more	in	formation	about	system
configuration	parameters.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Motion	Bytes	Sent m1_name Bytes
The	number	of	bytes	sent	by	the
iterator.

Motion	Total	Ack	Time m2_name Microseconds

The	total	amount	of	time	that	the
iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Average	Ack	Time m3_name Microseconds

The	average	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Max	Ack	Time m4_name Microseconds

The	maximum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Min	Ack	Time m5_name Microseconds

The	minimum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Count	Resent m6_name Packets

The	total	number	of	packets	that
the	iterator	did	not	acknowledge
when	they	first	arrived	in	the
queue.

Motion	Max	Resent m7_name Packets

The	maximum	number	of	packets
that	the	iterator	did	not
acknowledge	when	they	first
arrived	in	the	queue.	This	metric	is
applied	on	a	per	packet	basis.	For
example,	a	value	of	“10”	indicates
that	a	particular	packet	did	not	get
acknowledged	by	this	iterator	10
times,	and	that	this	was	the
maximum	for	this	iterator.

©	Copyright	Pivotal	Software	Inc,	2013-2016 90 3.1.1

Motion	Bytes	Received m8_name Bytes The	number	of	bytes	received	by
the	iterator.

Motion	Count	Dropped m9_name Packets
The	number	of	packets	dropped	by
the	iterator	because	of	buffer
overruns.

	Group	Aggregate

The	GroupAggregate	iterator	is	a	way	to	compute	vector	aggregates,	and	it	is	used	to	satisfy	a	 GROUP	BY 	clause.	A	single	input	set	is	required	by	the
GroupAggregate	iterator,	and	it	must	be	ordered	by	the	grouping	column(s).	This	iterator	returns	a	single	row	for	a	unique	value	of	grouping	columns.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Aggregate	Total	Spill	Tuples m1_name Tuples
The	number	of	tuples	spilled	to
disk.

Aggregate	Total	Spill	Bytes m2_name Bytes The	number	of	bytes	spilled	to	disk.

Aggregate	Total	Spill	Batches m3_name Batches
The	number	of	spill	batches
required.

Aggregate	Total	Spill	Pass m4_name Passes
The	number	of	passes	across	all	of
the	batches.

Aggregate	Current	Spill	Pass	Read
Tuples

m5_name Tuples
The	number	of	bytes	read	in	for	this
spill	batch

Aggregate	Current	Spill	Pass	Read
Bytes

m6_name Bytes
The	number	of	tuples	read	in	for
this	spill	batch

Aggregate	Current	Spill	Pass	Tuples m7_name Tuples
The	number	of	tuples	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass	Bytes m8_name Bytes
The	number	of	bytes	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass
Batches

m9_name Batches
The	number	of	batches	created	in
the	current	pass.

	Hash	Join

The	Hash	Join	iterator	requires	two	input	sets	-	the	outer	and	inner	tables.

	The	Hash	Join	iterator	starts	by	creating	its	inner	table	using	the	Hash	operator.	The	Hash	operator	creates	a	temporary	Hash	index	that	covers	the	join
column	in	the	inner	table.	When	the	hash	table	(that	is,	the	inner	table)	is	created,	Hash	Join	reads	each	row	in	the	outer	table,	hashes	the	join	column
(from	the	outer	table),	and	searches	the	temporary	Hash	index	for	a	matching	value.

In	a	Greenplum	Database	instance,	a	Hash	Join	algorithm	can	be	used	with	the	following	join	semantics:

Left	Join

Left	Anti	Semi	Join

Full	Join

Right	Join

EXISTS	Join

Reverse	In	Join

Unique	Inner	Join

Unique	Outer	Join

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Hash	Spill	Batches m1_name Batches The	current	batch	being	spilled.

Hash	Spill	Tuples m2_name Tuples The	current	number	of	spilled	tuples.

Hash	Spill	Bytes m3_name Bytes The	current	number	of	bytes	spilled	to	disk.

©	Copyright	Pivotal	Software	Inc,	2013-2016 91 3.1.1

	HashAggregate

The	HashAggregate	iterator	is	similar	to	the	GroupAggregate	iterator.	A	single	input	set	is	required	by	the	HashAggregate	iterator	and	it	creates	a	hash
table	from	the	input.	However,	it	does	not	require	its	input	to	be	ordered.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Aggregate	Total	Spill	Tuples m1_name Tuples
The	number	of	tuples	spilled	to
disk.

Aggregate	Total	Spill	Bytes m2_name Bytes The	number	of	bytes	spilled	to	disk.

Aggregate	Total	Spill	Batches m3_name Batches
The	number	of	spill	batches
required.

Aggregate	Total	Spill	Pass m4_name Passes The	number	of	passes	across	all	of
the	batches.

Aggregate	Current	Spill	Pass	Read
Tuples

m5_name Tuples
The	number	of	bytes	read	in	for	this
spill	batch

Aggregate	Current	Spill	Pass	Read
Bytes

m6_name Bytes
The	number	of	tuples	read	in	for
this	spill	batch

Aggregate	Current	Spill	Pass	Tuples m7_name Tuples
The	number	of	tuples	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass	Bytes m8_name Bytes
The	number	of	bytes	that	are	in
each	spill	file	in	the	current	pass.

Aggregate	Current	Spill	Pass
Batches

m9_name Batches
The	number	of	batches	created	in
the	current	pass.

	Index	Scan

An	Index	Scan	operator	traverses	an	index	structure.	If	you	specify	a	starting	value	for	an	indexed	column,	the	Index	Scan	will	begin	at	the	appropriate
value.	If	you	specify	an	ending	value,	the	Index	Scan	will	complete	as	soon	as	it	finds	an	index	entry	greater	than	the	ending	value.	A	query	planner	uses
an	Index	Scan	operator	when	it	can	reduce	the	size	of	the	result	set	by	traversing	a	range	of	indexed	values,	or	when	it	can	avoid	a	sort	because	of	the
implicit	ordering	offered	by	an	index.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Index	Scan	Restore m1_name Restores The	number	of	restores.

Index	Scan	Rescan m2_name Rescans The	number	of	rescans.

	Limit

The	Limit	operator	is	used	to	limit	the	size	of	a	result	set.	A	Greenplum	Database	instance	uses	the	Limit	operator	for	both	Limit	and	Offset	processing.	The
Limit	operator	works	by	discarding	the	first	x	rows	from	its	input	set,	returning	the	next	y	rows,	and	discarding	the	remainder.	If	the	query	includes	an
OFFSET	clause,	x	represents	the	offset	amount;	otherwise,	x	is	zero.	If	the	query	includes	a	LIMIT	clause,	y	represents	the	Limit	amount;	otherwise,	y	is	at
least	as	large	as	the	number	of	rows	in	the	input	set.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Materialize

The	materialize	iterator	is	used	for	some	sub-select	operations.	The	query	planner	can	decide	that	it	is	less	expensive	to	materialize	a	sub-select	one	time
than	it	is	to	repeat	the	work	for	each	top-level	row.	Materialize	is	also	used	for	some	merge/join	operations.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Materialize	Rescan m1_name Rescans The	number	of	times	the	executor	requested	to	rescan	the	date	for	this	iterator.

	Merge	Join

The	Merge	Join	iterator	joins	two	tables.	Like	the	Nested	Loop	iterator,	Merge	Join	requires	two	input	sets:	An	outer	table	and	an	inner	table.	Each	input

©	Copyright	Pivotal	Software	Inc,	2013-2016 92 3.1.1

set	must	be	ordered	by	the	join	columns.	In	a	Greenplum	Database	instance,	the	Merge	Join	algorithm	can	be	used	with	the	following	join	semantics:

Left	Join

Left	Anti	Semi	Join

Full	Join

Right	Join

EXISTS	Join

Reverse	In	Join

Unique	Outer	joins

Unique	Inner	Join

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Merge	Join	Inner	Tuples m1_name Tuples
The	number	of	rows	from	the	inner
part	of	the	query	plan.

Merge	Join	Outer	Tuples m2_name Tuples
The	number	of	rows	from	the	Outer
part	of	the	query	plan.

	Nested	Loop

The	Nested	Loop	iterator	is	used	to	perform	a	join	between	two	tables,	and	as	a	result	requires	two	input	sets.	It	fetches	each	table	from	one	of	the	input
sets	(called	the	outer	table).	For	each	row	in	the	outer	table,	the	other	input	(called	the	inner	table)	is	searched	for	a	row	that	meets	the	join	qualifier.	In	a
Greenplum	Database	instance,	a	Merge	Join	algorithm	can	be	used	with	the	following	join	semantics:

Left	Join

Left	Anti	Semi	Join

Full	Join

Right	Join

EXISTS	Join

Reverse	In	Join

Unique	Outer	Join

Unique	Inner	Join

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Nested	Loop	Inner	Tuples m1_name Tuples The	number	of	rows	from	the	inner	part	of	the	query	plan.

Nested	Loop	Outer	Tuples m2_name Tuples The	number	of	rows	from	the	outer	part	of	the	query	plan.

	Redistribute	Motion

This	iterator	sends	an	outbound	tuple	to	only	one	destination	based	on	the	value	of	a	hash.

Note	that	the	Motion	metrics	for	the	iterator	are	useful	when	investigating	potential	networking	issues	in	the	Greenplum	Database	system.	Typically,	the
“Ack	Time”	values	should	be	very	small	(microseconds	or	milliseconds).	However	if	the	“Ack	Time”	values	are	one	or	more	seconds	(particularly	the
“Motion	Min	Ack	Time”	metric),	then	a	network	performance	issue	likely	exists.

Also,	if	there	are	a	large	number	of	packets	being	dropped	because	of	queue	overflow,	you	can	increase	the	value	for	the	 gp_interconnect_queue_depth
system	configuration	parameter	to	improve	performance.	See	the	Greenplum	Database	Reference	Guide	for	more	in	formation	about	system
configuration	parameters.

Rows	in m0_name Rows
The	number	of	tuples	received	by
the	iterator.

Motion	Bytes	Sent m1_name Bytes
The	number	of	bytes	sent	by	the
iterator.

Motion	Total	Ack	Time m2_name Microseconds

The	total	amount	of	time	that	the
iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

©	Copyright	Pivotal	Software	Inc,	2013-2016 93 3.1.1

Motion	Average	Ack	Time m3_name Microseconds

The	average	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Max	Ack	Time m4_name Microseconds

The	maximum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Min	Ack	Time m5_name Microseconds

The	minimum	amount	of	time	that
the	iterator	waited	for	an
acknowledgement	after	sending	a
packet	of	data.

Motion	Count	Resent m6_name Packets

The	total	number	of	packets	that
the	iterator	did	not	acknowledge
when	they	first	arrived	in	the
queue.

Motion	Max	Resent m7_name Packets

The	maximum	number	of	packets
that	the	iterator	did	not
acknowledge	when	they	first
arrived	in	the	queue.	This	metric	is
applied	on	a	per	packet	basis.	For
example,	a	value	of	“10”	indicates
that	a	particular	packet	did	not	get
acknowledged	by	this	iterator	10
times,	and	that	this	was	the
maximum	for	this	iterator.

Motion	Bytes	Received m8_name Bytes
The	number	of	bytes	received	by
the	iterator.

Motion	Count	Dropped m9_name Packets
The	number	of	packets	dropped	by
the	iterator	because	of	buffer
overruns.

	Result

The	Result	iterator	is	used	to	either	(1)	execute	a	query	that	does	not	retrieve	data	from	a	table,	or	evaluate	the	parts	of	a	WHERE	clause	that	do	not
depend	on	data	retrieved	from	a	table.	It	can	also	be	used	if	the	top	node	in	the	query	plan	is	an	Append	iterator.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Repeat

This	iterator	repeats	every	input	operator	a	certain	number	of	times.	This	is	typically	used	for	certain	grouping	operations.

Metric	Description	Rows	in	 m0_name 	Rows	The	number	of	tuples	received	by	the	iterator.

	Seq	Scan

The	Seq	Scan	iterator	scans	heap	tables,	and	is	the	most	basic	query	iterator.	Any	single-table	query	can	be	done	by	using	the	Seq	Scan	iterator.	Seq	Scan
starts	at	the	beginning	of	a	heap	table	and	scans	to	the	end	of	the	heap	table.	For	each	row	in	the	heap	table,	Seq	Scan	evaluates	the	query	constraints
(the	WHERE	clause).	If	the	constraints	are	satisfied,	the	required	columns	are	added	to	the	result	set.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Seq	Scan	Page	Stats m1_name Pages The	number	of	pages	scanned.

Seq	Scan	Restore	Pos m2_name Restores The	number	of	times	the	executor	restored	the	scan	position.

Seq	Scan	Rescan m3_name Rescans The	number	of	times	the	executor	requested	to	rescan	the	date	for	this	iterator.

	SetOp

There	are	four	SetOp	iterators:

©	Copyright	Pivotal	Software	Inc,	2013-2016 94 3.1.1

Intersect

Intersect	All

Except

Except	All

These	iterators	are	produced	only	when	the	query	planner	encounters	an	 INTERSECT ,	 INTERSECT
ALL

,	 EXCEPT ,	or	 EXCEPT
ALL

	clause,	respectively.

All	SetOp	iterators	require	two	input	sets.	They	combine	the	input	sets	into	a	sorted	list,	and	then	groups	of	identical	rows	are	identified.	For	each	group,
the	SetOp	iterators	counts	the	number	of	rows	contributed	by	each	input	set,	then	uses	the	counts	to	determine	the	number	of	rows	to	add	to	the	result
set.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Shared	Scan

This	iterator	evaluates	the	common	parts	of	a	query	plan.	It	shares	the	output	of	the	common	sub-plans	with	all	other	iterators,	so	that	the	sub-plan	only
needs	to	execute	one	time.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Seq	Scan	Page	Stats m1_name Pages The	number	of	pages	scanned.

Seq	Scan	Restore	Pos m2_name Restores The	number	of	times	the	executor	restored	the	scan	position.

Seq	Scan	Rescan m3_name Rescans The	number	of	times	the	executor	requested	to	rescan	the	date	for	this	iterator.

	Sort

The	Sort	iterator	imposes	an	ordering	on	the	result	set.	A	Greenplum	Database	instance	uses	two	different	sort	strategies:	An	in-memory	sort	and	an	on-
disk	sort.	If	the	size	of	the	result	set	exceeds	the	available	memory,	the	Sort	iterator	distributes	the	input	set	to	a	collection	of	sorted	work	files	and	then
merges	the	work	files	back	together	again.	If	the	result	set	is	less	than	the	available	memory,	the	sort	is	done	in	memory.

The	Sort	iterator	is	used	for	many	purposes.	A	Sort	can	be	used	to	satisfy	an	 ORDER	BY 	clause.	Also,	some	query	operators	require	their	input	sets	to	be
ordered.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Sort	Memory	Usage m1_name Bytes The	number	of	bytes	used	by	the	sort.

Sort	Spill	Tuples m2_name Tuples The	current	number	of	spilled	tuples.

Sort	Spill	Bytes m3_name Bytes The	current	number	of	spilled	bytes.

Sort	Spill	Pass m4_name Passes The	number	of	merge	passes.	Each	merge	pass	merges	several	sorted	runs	into	larger	runs.

Sort	Current	Spill	Pass	Tuples m5_name Tuples The	number	of	tuples	spilled	in	the	current	spill	pass.

Sort	Current	Spill	Pass	Bytes m6_name Bytes The	number	of	bytes	spilled	in	the	current	spill	pass.

	Subquery	Scan

A	Subquery	Scan	iterator	is	a	pass-through	iterator.	It	scans	through	its	input	set,	adding	each	row	to	the	result	set.	This	iterator	is	used	for	internal
purposes	and	has	no	affect	on	the	overall	query	plan.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

Subquery	Scan	Rescan m1_name Rescans The	number	of	times	the	executor	requested	to	rescan	the	date	for	this	iterator.

	Tid	Scan

The	Tid	Scan	(tuple	ID	scan)	iterator	is	used	whenever	the	query	planner	encounters	a	constraint	of	the	form	 ctid	=
expression

	or	 expression	=
ctid

.	This

specifies	a	tuple	ID,	an	identifier	that	is	unique	within	a	table.	The	tuple	ID	works	like	a	bookmark,	but	is	valid	only	within	a	single	transaction.	After	the
transaction	completes,	the	tuple	ID	is	not	used	again.

Metric Metric	Column Unit Description

©	Copyright	Pivotal	Software	Inc,	2013-2016 95 3.1.1

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.Metric Metric	Column Unit Description

	Unique

The	Unique	iterator	eliminates	duplicate	values	from	the	input	set.	The	input	set	must	be	ordered	by	the	columns,	and	the	columns	must	be	unique.	The
Unique	operator	removes	only	rows	—	it	does	not	remove	columns	and	it	does	not	change	the	ordering	of	the	result	set.	Unique	can	return	the	first	row	in
the	result	set	before	it	has	finished	processing	the	input	set.	The	query	planner	uses	the	Unique	operator	to	satisfy	a	 DISTINCT 	clause.	Unique	is	also
used	to	eliminate	duplicates	in	a	 UNION .

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Values	Scan

The	Value	Scan	iterator	is	used	to	iterate	over	a	set	of	constant	tuples.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

	Window

The	Window	function	performs	calculations	across	sets	of	rows	that	are	related	to	the	current	query	row.	The	Window	iterator	computes	Window
functions	on	the	input	set	of	rows.

Metric Metric	Column Unit Description

Rows	in m0_name Rows The	number	of	tuples	received	by	the	iterator.

©	Copyright	Pivotal	Software	Inc,	2013-2016 96 3.1.1

	

log_alert_*
The	 log_alert_* 	tables	store	 pg_log 	errors	and	warnings.

There	are	three	 log_alert 	tables,	each	with	the	same	columns:

log_alert_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	 pg_log 	errors	and
warnings	data	is	stored	in	 log_alert_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	commitment	to	the	
log_alert_history 	table.

log_alert_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	query
workload	data	that	has	been	cleared	from	 log_alert_now 	but	has	not	yet	been	committed	to	 log_alert_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

log_alert_history 	is	a	regular	table	that	stores	historical	database-wide	errors	and	warnings	data.	It	is	pre-partitioned	into	monthly	partitions.
Partitions	are	automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer
needed.

Column Type Description

logtime timestamp	with	time	zone Timestamp	for	this	log

loguser text User	of	the	query

logdatabase text The	accessed	database

logpid text Process	id

logthread text Thread	number

loghost text Host	name	or	ip	address

logport text Port	number

logsessiontime timestamp	with	time	zone Session	timestamp

logtransaction integer Transaction	id

logsession text Session	id

logcmdcount text Command	count

logsegment text Segment	number

logslice text Slice	number

logdistxact text Distributed	transaction

loglocalxact text Local	transaction

logsubxact text Subtransaction

logseverity text Log	severity

logstate text State

logmessage text Log	message

logdetail text Detailed	message

loghint text Hint	info

logquery text Executed	query

logquerypos text Query	position

logcontext text Context	info

logdebug text Debug

logcursorpos text Cursor	position

logfunction text Function	info

logfile text Source	code	file

logline text Source	code	line

logstack text Stack	trace

©	Copyright	Pivotal	Software	Inc,	2013-2016 97 3.1.1

Log	Processing	and	Rotation
The	Greenplum	Database	system	logger	writes	alert	logs	in	the	 $MASTER_DATA_DIRECTORY/gpperfmon/logs 	directory.

The	agent	process	(gpmmon)	performs	the	following	steps	to	consolidate	log	files	and	load	them	into	the	 gpperfmon 	database:

1.	 Gathers	all	of	the	 gpdb-alert-* 	files	in	the	logs	directory	(except	the	latest,	which	the	syslogger	has	open	and	is	writing	to)	into	a	single	file,	
alert_log_stage .

2.	 Loads	the	 alert_log_stage 	file	into	the	 log_alert_history 	table	in	the	 gpperfmon 	database.

3.	 Truncates	the	 alert_log_stage 	file.

4.	 Removes	all	of	the	 gp-alert-* 	files,	except	the	latest.

The	syslogger	rotates	the	alert	log	every	24	hours	or	when	the	current	log	file	reaches	or	exceeds	1MB.	A	rotated	log	file	can	exceed	1MB	if	a	single	error
message	contains	a	large	SQL	statement	or	a	large	stack	trace.	Also,	the	syslogger	processes	error	messages	in	chunks,	with	a	separate	chunk	for	each
logging	process.	The	size	of	a	chunk	is	OS-dependent;	on	Red	Hat	Enterprise	Linux,	for	example,	it	is	4096	bytes.	If	many	Greenplum	Database	sessions
generate	error	messages	at	the	same	time,	the	log	file	can	grow	significantly	before	its	size	is	checked	and	log	rotation	is	triggered.

©	Copyright	Pivotal	Software	Inc,	2013-2016 98 3.1.1

	

queries_*
The	 queries_* 	tables	store	high-level	query	status	information.

The	 tmid ,	 ssid 	and	 ccnt 	columns	are	the	composite	key	that	uniquely	identifies	a	particular	query.	These	columns	can	be	used	to	join	with	the	
iterators_* 	tables.

There	are	three	queries	tables,	all	having	the	same	columns:

queries_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	query	status	is	stored	in	
queries_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	 queries_history
table.

queries_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	query
status	data	that	has	been	cleared	from	 queries_now 	but	has	not	yet	been	committed	to	 queries_history .	It	typically	only	contains	a	few	minutes
worth	of	data.

queries_history 	is	a	regular	table	that	stores	historical	query	status	data.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are	automatically
added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

ctime timestamp Time	this	row	was	created.

tmid int
A	time	identifier	for	a	particular	query.	All
records	associated	with	the	query	will	have	the
same	 tmid .

ssid int
The	session	id	as	shown	by	 gp_session_id .	All
records	associated	with	the	query	will	have	the
same	 ssid .

ccnt int

The	command	number	within	this	session	as
shown	by	 gp_command_count .	All	records
associated	with	the	query	will	have	the	same	
ccnt .

username varchar(64) Greenplum	role	name	that	issued	this	query.

db varchar(64) Name	of	the	database	queried.

cost int Not	implemented	in	this	release.

tsubmit timestamp Time	the	query	was	submitted.

tstart timestamp Time	the	query	was	started.

tfinish timestamp Time	the	query	finished.

status varchar(64)
Status	of	the	query	–	 start ,	 done ,	or	 abort
.

rows_out bigint Rows	out	for	the	query.

cpu_elapsed bigint

CPU	usage	by	all	processes	across	all	segments
executing	this	query	(in	seconds).	It	is	the	sum	of
the	CPU	usage	values	taken	from	all	active
primary	segments	in	the	database	system.

Note	that	Greenplum	Command	Center	logs	the
value	as	0	if	the	query	runtime	is	shorter	than
the	value	for	the	quantum.	This	occurs	even	if
the	query	runtime	is	greater	than	the	values	for
min_query_time 	and	 min_detailed_query ,	and	these
values	are	lower	than	the	value	for	the	quantum.

cpu_currpct float

Current	CPU	percent	average	for	all	processes
executing	this	query.	The	percentages	for	all
processes	running	on	each	segment	are
averaged,	and	then	the	average	of	all	those
values	is	calculated	to	render	this	metric.

©	Copyright	Pivotal	Software	Inc,	2013-2016 99 3.1.1

Current	CPU	percent	average	is	always	zero	in
historical	and	tail	data.

skew_cpu float

Displays	the	amount	of	processing	skew	in	the
system	for	this	query.	Processing/CPU	skew
occurs	when	one	segment	performs	a
disproportionate	amount	of	processing	for	a
query.	This	value	is	the	coefficient	of	variation	in
the	CPU%	metric	of	all	iterators	across	all
segments	for	this	query,	multiplied	by	100.	For
example,	a	value	of	.95	is	shown	as	95.

skew_rows float

Displays	the	amount	of	row	skew	in	the	system.
Row	skew	occurs	when	one	segment	produces	a
disproportionate	number	of	rows	for	a	query.
This	value	is	the	coefficient	of	variation	for	the	
rows_in 	metric	of	all	iterators	across	all
segments	for	this	query,	multiplied	by	100.	For
example,	a	value	of	.95	is	shown	as	95.

query_hash bigint Not	implemented	in	this	release.

query_text text The	SQL	text	of	this	query.

query_plan text
Text	of	the	query	plan.	Not	implemented	in	this
release.

application_name varchar(64) The	name	of	the	application.

rsqname varchar(64) The	name	of	the	resource	queue.

rqppriority varchar(64)
The	priority	of	the	query	–	
max, high, med, low, or min .

©	Copyright	Pivotal	Software	Inc,	2013-2016 100 3.1.1

	

segment_*
The	 segment_* 	tables	contain	memory	allocation	statistics	for	the	Greenplum	Database	segment	instances.	This	tracks	the	amount	of	memory	consumed
by	all	postgres	processes	of	a	particular	segment	instance,	and	the	remaining	amount	of	memory	available	to	a	segment	as	per	the	setting	of	the	
postgresql.conf 	configuration	parameter:	 gp_vmem_protect_limit .	Query	processes	that	cause	a	segment	to	exceed	this	limit	will	be	cancelled	in	order	to
prevent	system-level	out-of-memory	errors.	See	the	Greenplum	Database	Reference	Guide	for	more	information	about	this	parameter.

There	are	three	segment	tables,	all	having	the	same	columns:

segment_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	memory	allocation	data	is
stored	in	 segment_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the
segment_history	table.

segment_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	memory
allocation	data	that	has	been	cleared	from	 segment_now 	but	has	not	yet	been	committed	to	 segment_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

segment_history 	is	a	regular	table	that	stores	historical	memory	allocation	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

A	particular	segment	instance	is	identified	by	its	 hostname 	and	 dbid 	(the	unique	segment	identifier	as	per	the	 gp_segment_configuration 	system	catalog
table).

ctime

timestamp(0)

(without	time	zone)
The	time	the	row	was	created.

dbid int
The	segment	ID	(dbid 	from	
gp_segment_configuration).

hostname charvar(64) The	segment	hostname.

dynamic_memory_used bigint
The	amount	of	dynamic	memory	(in	bytes)
allocated	to	query	processes	running	on	this
segment.

dynamic_memory_available bigint

The	amount	of	additional	dynamic	memory	(in
bytes)	that	the	segment	can	request	before
reaching	the	limit	set	by	the	
gp_vmem_protect_limit 	parameter.

See	also	the	views	 memory_info 	and	 dynamic_memory_info 	for	aggregated	memory	allocation	and	utilization	by	host.

©	Copyright	Pivotal	Software	Inc,	2013-2016 101 3.1.1

	

socket_stats_*
The	 socket_stats_* 	tables	store	statistical	metrics	about	socket	usage	for	a	Greenplum	Database	instance.	There	are	three	system	tables,	all	having	the
same	columns:

These	tables	are	in	place	for	future	use	and	are	not	currently	populated.

socket_stats_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .

socket_stats_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for
socket	statistical	metrics	that	has	been	cleared	from	 socket_stats_now 	but	has	not	yet	been	committed	to	 socket_stats_history .	It	typically
only	contains	a	few	minutes	worth	of	data.

socket_stats_history 	is	a	regular	table	that	stores	historical	socket	statistical	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

total_sockets_used int Total	sockets	used	in	the	system.

tcp_sockets_inuse int Number	of	TCP	sockets	in	use.

tcp_sockets_orphan int Number	of	TCP	sockets	orphaned.

tcp_sockets_timewait int Number	of	TCP	sockets	in	Time-Wait.

tcp_sockets_alloc int Number	of	TCP	sockets	allocated.

tcp_sockets_memusage_inbytes int Amount	of	memory	consumed	by	TCP	sockets.

udp_sockets_inuse int Number	of	UDP	sockets	in	use.

udp_sockets_memusage_inbytes int Amount	of	memory	consumed	by	UDP	sockets.

raw_sockets_inuse int Number	of	RAW	sockets	in	use.

frag_sockets_inuse int Number	of	FRAG	sockets	in	use.

frag_sockets_memusage_inbytes int Amount	of	memory	consumed	by	FRAG	sockets.

©	Copyright	Pivotal	Software	Inc,	2013-2016 102 3.1.1

	

system_*
The	 system_* 	tables	store	system	utilization	metrics.	There	are	three	system	tables,	all	having	the	same	columns:

system_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	Current	system	utilization	data	is	stored
in	 system_now 	during	the	period	between	data	collection	from	the	Command	Center	agents	and	automatic	commitment	to	the	 system_history
table.

system_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	system
utilization	data	that	has	been	cleared	from	 system_now 	but	has	not	yet	been	committed	to	 system_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

system_history 	is	a	regular	table	that	stores	historical	system	utilization	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

ctime timestamp Time	this	row	was	created.

hostname varchar(64) Segment	or	master	hostname	associated	with	these	system	metrics.

mem_total bigint Total	system	memory	in	Bytes	for	this	host.

mem_used bigint Used	system	memory	in	Bytes	for	this	host.

mem_actual_used bigint Used	actual	memory	in	Bytes	for	this	host	(not	including	the	memory	reserved	for	cache	and	buffers).

mem_actual_free bigint Free	actual	memory	in	Bytes	for	this	host	(not	including	the	memory	reserved	for	cache	and	buffers).

swap_total bigint Total	swap	space	in	Bytes	for	this	host.

swap_used bigint Used	swap	space	in	Bytes	for	this	host.

swap_page_in bigint Number	of	swap	pages	in.

swap_page_out bigint Number	of	swap	pages	out.

cpu_user float CPU	usage	by	the	Greenplum	system	user.

cpu_sys float CPU	usage	for	this	host.

cpu_idle float Idle	CPU	capacity	at	metric	collection	time.

load0 float CPU	load	average	for	the	prior	one-minute	period.

load1 float CPU	load	average	for	the	prior	five-minute	period.

load2 float CPU	load	average	for	the	prior	fifteen-minute	period.

quantum int Interval	between	metric	collection	for	this	metric	entry.

disk_ro_rate bigint Disk	read	operations	per	second.

disk_wo_rate bigint Disk	write	operations	per	second.

disk_rb_rate bigint Bytes	per	second	for	disk	write	operations.

net_rp_rate bigint Packets	per	second	on	the	system	network	for	read	operations.

net_wp_rate bigint Packets	per	second	on	the	system	network	for	write	operations.

net_rb_rate bigint Bytes	per	second	on	the	system	network	for	read	operations.

net_wb_rate bigint Bytes	per	second	on	the	system	network	for	write	operations.

©	Copyright	Pivotal	Software	Inc,	2013-2016 103 3.1.1

	

tcp_stats_*
The	 tcp_stats_* 	tables	store	statistical	metrics	about	TCP	communications	for	a	Greenplum	Database	instance.

These	tables	are	in	place	for	future	use	and	are	not	currently	populated.

There	are	three	system	tables,	all	having	the	same	columns:

tcp_stats_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .

tcp_stats_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	TCP
statistical	data	that	has	been	cleared	from	 tcp_stats_now 	but	has	not	yet	been	committed	to	 tcp_stats_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

tcp_stats_history 	is	a	regular	table	that	stores	historical	TCP	statistical	data.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

segments_received bigint Number	of	TCP	segments	received.

segments_sent bigint Number	of	TCP	segments	sent.

segments_retransmitted bigint Number	of	TCP	segments	retransmitted.

active_connections int Number	of	active	TCP	connections.

passive_connections int Number	of	passive	TCP	connections.

failed_connection_attempts int Number	of	failed	TCP	connection	attempts.

connections_established int Number	of	TCP	connections	established.

connection_resets_received int Number	of	TCP	connection	resets	received.

connection_resets_sent int Number	of	TCP	connection	resets	sent.

©	Copyright	Pivotal	Software	Inc,	2013-2016 104 3.1.1

	

udp_stats_*
The	 udp_stats_* 	tables	store	statistical	metrics	about	UDP	communications	for	a	Greenplum	Database	instance.

These	tables	are	in	place	for	future	use	and	are	not	currently	populated.

There	are	three	system	tables,	all	having	the	same	columns:

udp_stats_now 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .

udp_stats_tail 	is	an	external	table	whose	data	files	are	stored	in	 $MASTER_DATA_DIRECTORY/gpperfmon/data .	This	is	a	transitional	table	for	UDP
statistical	data	that	has	been	cleared	from	 udp_stats_now 	but	has	not	yet	been	committed	to	 udp_stats_history .	It	typically	only	contains	a	few
minutes	worth	of	data.

udp_stats_history 	is	a	regular	table	that	stores	historical	UDP	statistical	metrics.	It	is	pre-partitioned	into	monthly	partitions.	Partitions	are
automatically	added	in	two	month	increments	as	needed.	Administrators	must	drop	old	partitions	for	the	months	that	are	no	longer	needed.

Column Type Description

packets_received bigint Number	of	UDP	packets	received.

packets_sent bigint Number	of	UDP	packets	sent.

packets_received_unknown_port int Number	of	UDP	packets	received	on	unknown	ports.

packet_receive_errors bigint Number	of	errors	encountered	during	UDP	packet	receive.

©	Copyright	Pivotal	Software	Inc,	2013-2016 105 3.1.1

	

iterators_*_rollup
The	 iterators_*_rollup 	set	of	views	aggregate	the	metrics	stored	in	the	 iterators_* 	tables.	A	query	iterator	refers	to	a	node	or	operation	in	a	query	plan.	For
example,	a	sequential	scan	operation	may	be	one	type	of	iterator	in	a	particular	query	plan.	For	each	iterator	in	a	query	plan,	the	 iterators_* 	tables	store
the	metrics	collected	from	each	segment	instance.	The	 iterators_*_rollup 	views	summarize	the	query	iterator	metrics	across	all	segments	in	the	system.

The	 tmid ,	 ssid 	and	 ccnt 	columns	are	the	composite	key	that	uniquely	identifies	a	particular	query.

There	are	three	iterators	rollup	views,	all	having	the	same	columns:

The	 iterators_now_rollup 	view	shows	iterator	data	from	the	 interators_now 	table	aggregated	across	all	segments	in	the	system.

The	 iterators_tail_rollup 	view	shows	iterator	data	from	the	 interators_tail 	table	aggregated	across	all	segments	in	the	system.

The	 iterators_history_rollup 	shows	iterator	data	from	the	 interators_history 	table	aggregated	across	all	segments	in	the	system.

See	also	the	 iterators_* 	tables	for	more	information	about	the	query	plan	iterator	types	and	the	metrics	collected	for	each	iterator.

sample_time timestamp
The	 ctime 	from	the	associated iterators_*

table.

tmid int
A	time	identifier	for	a	particular	query.	All
iterator	records	associated	with	the	query	will
have	the	same	 tmid .

ssid int
The	session	id	as	shown	by	the	 gp_session_id
parameter.	All	iterator	records	associated	with
the	query	will	have	the	same	 ssid .

ccnt int

The	command	number	within	this	session	as
shown	by	 gp_command_count 	parameter.	All
iterator	records	associated	with	the	query	will
have	the	same	 ccnt .

nid int
The	ID	of	this	query	plan	node	from	the	slice
plan.

pnid int
The	 pnid 	(slice	plan	parent	node	ID)	from	the
associated	 iterators_* 	table.

ntype text
The	 ntype 	(node/iterator	type)	from	the
associated	 iterators_* 	table.

nstatus text
The	accumulated	status	of	this	iterator.	Possible
values	are:	Initialize,	Executing,	or	Finished.

tstart timestamp The	average	start	time	for	this	iterator.

tduration numeric The	average	execution	time	for	this	iterator.

pmemsize numeric
The	average	work	memory	allocated	by	the
Greenplum	planner	to	this	iterator’s	query
processes.

pmemmax numeric
The	average	of	the	maximum	planner	work
memory	used	by	this	iterator’s	query	processes.

memsize numeric
The	average	OS	memory	allocated	to	this
iterator’s	processes.

memresid numeric
The	average	resident	memory	allocated	to	this
iterator’s	processes	(as	opposed	to	shared
memory).

memshare numeric
The	average	shared	memory	allocated	to	this
iterator’s	processes.

cpu_elapsed numeric
Sum	of	the	CPU	usage	of	all	segment	processes
executing	this	iterator.

The	current	average	percentage	of	CPU
utilization	used	by	this	iterator’s	processes.	This

©	Copyright	Pivotal	Software	Inc,	2013-2016 106 3.1.1

cpu_currpct double	precision
utilization	used	by	this	iterator’s	processes.	This
value	is	always	zero	for	historical	(completed)
iterators.

rows_out numeric
The	total	number	of	actual	rows	output	for	this
iterator	on	all	segments.

rows_out_est numeric
The	total	number	of	output	rows	for	all
segments	as	estimated	by	the	query	planner.

skew_cpu numeric

Coefficient	of	variation	for	 cpu_elapsed 	of
iterators	across	all	segments	for	this	query,
multiplied	by	100.	For	example,	a	value	of	.95	is
rendered	as	95.

skew_rows numeric

Coefficient	of	variation	for	 rows_out 	of
iterators	across	all	segments	for	this	query,
multiplied	by	100.	For	example,	a	value	of	.95	is

rendered	as	95.

m0 text

The	name	(m0_name),	unit	of	measure	(
m0_unit) ,	average	actual	value	(m0_val),
and	average	estimated	value	(m0_est)	for	this
iterator	metric	across	all	segments.	The	 m0
metric	is	always	rows	for	all	iterator	types.

m1 text

The	name	(m1_name),	unit	of	measure	(
m1_unit),	average	actual	value	(m1_val),
and	average	estimated	value	(m1_est)	for	this
iterator	metric	across	all	segments.

m2 text

The	name	(m2_name),	unit	of	measure	(
m2_unit),	average	actual	value	(m2_val),
and	average	estimated	value	(m2_est)	for	this
iterator	metric	across	all	segments.

m3 text

The	name	(m3_name),	unit	of	measure	(
m3_unit),	average	actual	value	(m3_val),
and	average	estimated	value	(m3_est)	for	this
iterator	metric	across	all	segments.

m4 text

The	name	(m4_name),	unit	of	measure	(
m4_unit),	average	actual	value	(m4_val),
and	average	estimated	value	(m4_est)	for	this
iterator	metric	across	all	segments.

m5 text

The	name	(m5_name),	unit	of	measure	(
m5_unit),	average	actual	value	(m5_val),
and	average	estimated	value	(m5_est)	for	this
iterator	metric	across	all	segments.

m6 text

The	name	(m6_name),	unit	of	measure	(
m6_unit),	average	actual	value	(m6_val),
and	average	estimated	value	(m6_est)	for	this
iterator	metric	across	all	segments.

m7 text

The	name	(m7_name),	unit	of	measure	(
m7_unit),	average	actual	value	(m7_val),
and	average	estimated	value	(m7_est)	for	this
iterator	metric	across	all	segments.

m8 text

The	name	(m8_name),	unit	of	measure	(
m8_unit),	average	actual	value	(m8_val),

and	average	estimated	value	(m8_est)	for	this
iterator	metric	across	all	segments.

m9 text

The	name	(m9_name),	unit	of	measure	(
m9_unit),	average	actual	value	(m9_val),
and	average	estimated	value	(m9_est)	for	this
iterator	metric	across	all	segments.

m10 - m5 text
Metrics	 m10 	through	 m15 	are	not	currently
used	by	any	iterator	types.

©	Copyright	Pivotal	Software	Inc,	2013-2016 107 3.1.1

t0 text

The	name	of	the	relation	(t0_val)	being
scanned	by	this	iterator.	This	metric	is	collected
only	for	iterators	that	perform	scan	operations
such	as	a	sequential	scan	or	function	scan.

©	Copyright	Pivotal	Software	Inc,	2013-2016 108 3.1.1

	

dynamic_memory_info
The	 dynamic_memory_info 	view	shows	a	sum	of	the	used	and	available	dynamic	memory	for	all	segment	instances	on	a	segment	host.	Dynamic	memory
refers	to	the	maximum	amount	of	memory	that	Greenplum	Database	instance	will	allow	the	query	processes	of	a	single	segment	instance	to	consume
before	it	starts	cancelling	processes.	This	limit	is	set	by	the	 gp_vmem_protect_limit 	server	configuration	parameter,	and	is	evaluated	on	a	per-segment
basis.

Column Type Description

ctime

timestamp(0)
without	time
zone

Time	this	row	was	created	in	the	 segment_history 	table.

hostname varchar(64) Segment	or	master	hostname	associated	with	these	system	memory	metrics.

dynamic_memory_used_mb numeric The	amount	of	dynamic	memory	in	MB	allocated	to	query	processes	running	on	this	segment.

dynamic_memory_available_mb numeric

The	amount	of	additional	dynamic	memory	(in	MB)	available	to	the	query	processes	running	on
this	segment	host.	Note	that	this	value	is	a	sum	of	the	available	memory	for	all	segments	on	a
host.	Even	though	this	value	reports	available	memory,	it	is	possible	that	one	or	more	segments
on	the	host	have	exceeded	their	memory	limit	as	set	by	the	 gp_vmem_protect_limit 	parameter.

©	Copyright	Pivotal	Software	Inc,	2013-2016 109 3.1.1

	

memory_info
The	 memory_info 	view	shows	per-host	memory	information	from	the	 system_history 	and	 segment_history 	tables.	This	allows	administrators	to	compare	the
total	memory	available	on	a	segment	host,	total	memory	used	on	a	segment	host,	and	dynamic	memory	used	by	query	processes.

Column Type Description

ctime

timestamp(0)
without	time
zone

Time	this	row	was	created	in	the	 segment_history 	table.

hostname varchar(64) Segment	or	master	hostname	associated	with	these	system	memory	metrics.

mem_total_mb numeric Total	system	memory	in	MB	for	this	segment	host.

mem_used_mb numeric Total	system	memory	used	in	MB	for	this	segment	host.

mem_actual_used_mb numeric Actual	system	memory	used	in	MB	for	this	segment	host.

mem_actual_free_mb numeric Actual	system	memory	free	in	MB	for	this	segment	host.

swap_total_mb numeric Total	swap	space	in	MB	for	this	segment	host.

swap_used_mb numeric Total	swap	space	used	in	MB	for	this	segment	host.

dynamic_memory_used_mb numeric The	amount	of	dynamic	memory	in	MB	allocated	to	query	processes	running	on	this	segment.

dynamic_memory_available_mb numeric

The	amount	of	additional	dynamic	memory	(in	MB)	available	to	the	query	processes	running	on
this	segment	host.	Note	that	this	value	is	a	sum	of	the	available	memory	for	all	segments	on	a
host.	Even	though	this	value	reports	available	memory,	it	is	possible	that	one	or	more	segments
on	the	host	have	exceeded	their	memory	limit	as	set	by	the	 gp_vmem_protect_limit 	parameter.

©	Copyright	Pivotal	Software	Inc,	2013-2016 110 3.1.1

	Table of Contents
	Pivotal Greenplum Command Center Documentation
	About Pivotal Greenplum Command Center
	Introduction
	Supported Greenplum Platforms
	Architecture
	Greenplum Data Collection Agents
	Greenplum Command Center Database
	Greenplum Command Center Console
	Greenplum Command Center Web Service

	Installing the Greenplum Command Center Software
	Installation Notes

	Downloading and Running the Greenplum Command Center Installer
	Download and Run the Installer
	Install Greenplum Command Center Software on Additional Hosts

	About the Command Center Installation
	Software Installation Directory
	Instances Directory

	Setting the Greenplum Command Center Environment
	Creating the gpperfmon Database
	Enabling the Collection Agents
	Configuring a Standby Master Host (if enabled)
	gpmon User Authentication

	Upgrading Greenplum Command Center
	Install the New Software Release
	Migrate Command Center Instances

	Uninstalling Greenplum Command Center
	Running Greenplum Command Center 2.x in Parallel With 3.x
	Continue Running an Installed GPCC 2.x Version
	Install GPCC 2.x in Addition to GPCC 3.x
	Managing Concurrent GPCC 2.x and 3.x Versions

	Creating Greenplum Command Center Console Instances
	Before You Begin
	Creating the Greenplum Command Center Instance (Interactive)
	Creating the Command Center Console Instance (Non-interactive)
	Start the Command Center Console Instance

	Connecting to the Greenplum Command Center Console
	Greenplum Command Center User Guide
	Dashboard
	System Information
	System Summary
	Disk Usage Summary
	Queries
	CPU
	Memory
	Alerts

	Query Monitor
	Query Metrics
	Using the Query Monitor Controls

	Host Metrics
	About Skew Calculations

	Cluster Metrics
	Monitoring Multiple Greenplum Database Clusters
	History
	Query Metrics

	System
	Segment Status
	Segment Summary
	Segment Health
	Preferred Roles
	Segment Table

	Storage Status
	Disk Usage Summary
	GP Segments Usage History
	Storage Status Table

	Admin
	Permission Levels for GPCC Access
	Viewing User Permissions
	Changing User Permission Levels

	Authentication
	Viewing the Host-Based Authentication File
	Editing the Host-Based Authentication File
	Loading a Previous Version of the Host-Based Authentication File

	Administering Greenplum Command Center
	Starting and Stopping Greenplum Command Center
	Starting and Stopping Command Center Agents
	Starting and Stopping Command Center Console

	Administering Command Center Agents
	Adding and Removing Hosts
	Viewing and Maintaining Master Agent Log Files
	Configuring Log File Rollover

	Administering the Command Center Database
	Connecting to the Command Center Database
	Backing Up and Restoring the Command Center Database
	Maintaining the Historical Data Tables

	Administering the Web Server
	Configuring the Web Server
	Viewing and Maintaining Web Server Log Files

	Configuring Greenplum Command Center
	Agent Configuration
	Console Configuration

	Enabling Multi-Cluster Support
	Setting Up Multiple Clusters

	Securing a Greenplum Command Center Console Instance
	SSL/TLS Encryption
	Authentication Options
	Authorization

	Configuring Authentication for the Command Center Console
	Enabling Authentication with Kerberos
	Before You Begin
	Add Command Center Principals to the KDC Database
	Adding Kerberos Principals

	Set Up Keytab Files
	Command Center Instance on the Greenplum Master Host
	Command Center Instance on a Separate Host

	Update the Greenplum Database pg_hba.conf File
	Enable Kerberos for the Command Center Instance
	Authenticating With Kerberos on the Client Workstation

	Securing the gpmon Database User
	Changing the gpmon Password
	Authenticating gpmon with Kerberos

	Utility Reference
	gpperfmon_install
	Description
	Examples

	gpcmdr
	Description
	Examples

	Configuration File Reference
	Command Center Agent Parameters
	Command Center Console Parameters
	Setup Configuration File
	Parameters
	Examples

	Greenplum Database Server Configuration Parameters
	Command Center Database Reference
	database_*
	emcconnect_history
	diskspace_*
	filerep_*
	health_*
	interface_stats_*
	iterators_*
	Iterator Metrics
	log_alert_*
	Log Processing and Rotation

	queries_*
	segment_*
	socket_stats_*
	system_*
	tcp_stats_*
	udp_stats_*
	iterators_*_rollup
	dynamic_memory_info
	memory_info

